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Abstract— In this study, we analyze a synchronization phe-
nomenon observed from a circuit network consisting of sev-
eral number of oscillator chains which are one-dimensional
arrays of weakly coupled van der Pol oscillators. Computer
simulations and circuit experiments show interesting unexpected
synchronization phenomenon and theoretical analysis explains
the synchronization state.

I. Introduction

Synchronization phenomena are basic but important phe-
nomena observed everywhere in natures, for example vibration
of a pendulum, firefly luminescence, gait patterns of four-leg
animals, two frogs using voice religiously, periodic swinging
of candle flames, and so on. Coupled oscillators are good
models to investigate such interesting synchronization phe-
nomena. Many researchers have proposed different coupled
oscillators networks and have discovered many interesting
synchronization phenomena [1]-[8]. The research group of
the authors is also working on coupled oscillatory networks.
Especially, we have been interested in coupled oscillators
whose connections cause some kinds of frustrations [9]-[12].

In this study, we consider a circuit network consisting of
several number of oscillator chains which are one-dimensional
arrays of weakly coupled van der Pol oscillators. In this
network, we couple the oscillators at one edge of the chains
to constrain them to produce in-phase synchronizations. While
we couple the oscillators at the other edge of the chains to
produce anti-phase synchronizations. Middle oscillators in the
chains are not coupled with the other chains. From computer
simulations and circuit experiments, we observe relatively
interesting unexpected synchronization phenomenon. By con-
sidering the total power consumption of the coupling resistors,
we can explain the stable synchronization state theoretically.
The results in this study would be a good model of various
natural and artificial systems.

II. CircuitModel

Figure 1 shows the circuit model for the case of 3 oscillator
chains. Each oscillator-chain consists of n van der Pol oscilla-
tors weakly coupled by resistors r. In the figure, bottom three
oscillators are coupled by relatively strong resistors Ri, while
the top three oscillators are coupled by also relatively strong
resistors Ra via inductors. Middle oscillators are not coupled
with oscillators located in the horizontal direction but weakly
coupled vertically.

The coupling structure on the bottom or in vertical couplings
(by Ri or r) tends to make the oscillators to synchronize in
in-phase. While the coupling structure on the top (by Ra via
inductor) tends to make the oscillators to synchronize in anti-
phase.

Fig. 1. Circuit model for the case of n oscillator-chains.

We define the bottom three oscillators as Osc11, Osc12, and
Osc13 from the left, those on the kth row from the bottom as
Osck1, Osck2, and Osck3, and the top three oscillators as Oscn1,
Oscn2, and Oscn3.

First, we assume that the v−i characteristics of the nonlinear
resistor in each oscillator is given by the following third order
polynomial equation.

iRk j = −g1vk j + g3vk j
3 (1)

where g1, g3 > 0, k = 1, 2, ..., n, and j = 1, 2, 3.
By using the following variables and parameters:

t =
√

LCτ, vk j =

√
g1

g3
xk j, ik j =

√
g1C
g3L

yk j,
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1
g 1

√
L
C
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1
Ri

√
L
C
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√
L
C
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1
r

√
L
C
,

the normalized circuit equations are given as follows:
(1) Bottom oscillators:

ẋ11 = ε (1 − x11
2)x11 − y11 + β (x21 − x11) − αi (x11 − x12)

ẏ11 = x11
ẋ12 = ε (1 − x12

2)x12 − y12 + β (x22 − x12)
+ αi (x11 − 2x12 + x13)

ẏ12 = x12
ẋ13 = ε (1 − x13

2)x13 − y13 + β (x23 − x13) − αi (x13 − x12)
ẏ13 = x13

(2)
(2) Middle oscillators (k = 2, 3, · · · , n − 1) :

ẋk1 = ε (1 − xk1
2)xk1 − yk1 + β (x(k+1)1 − 2xk1 + x(k−1)1)

ẏk1 = xk1
ẋk2 = ε (1 − xk2

2)xk2 − yk2 + β (x(k+1)2 − 2xk2 + x(k−1)2)
ẏk2 = xk2
ẋk3 = ε (1 − xk3

2)xk3 − yk3 + β (x(k+1)3 − 2xk3 + x(k−1)3)
ẏk3 = xk3

(3)
(3) Top oscillators:

ẋn1 = ε (1 − xn1
2)xn1 − (yn1a + yn1b) − β (xn1 − x(n−1)1)

ẏn1a = 0.5 {xn1 − αa (yn1a + yn2b)}
ẏn1b = 0.5 xn1
ẋn2 = ε (1 − xn2

2)xn2 − (yn2a + yn2b) − β (xn2 − x(n−1)2)
ẏn2a = 0.5 {xn2 − αa (yn2a + yn3b)}
ẏn2b = 0.5 {xn2 − αa (yn1a + yn2b)}
ẋn3 = ε (1 − xn3

2)xn3 − (yn3a + yn3b) − β (xn3 − x(n−1)3)
ẏn3a = 0.5 xn3
ẏn3b = 0.5 {xn3 − αa (yn2a + yn3b)}

(4)
where xk j corresponds to the voltage across the capacitor and
yk j, yn ja, yn jb are the currents through the inductors of Osck j.

III. Synchronization Phenomena
Figures 2 and 3 show the computer simulation results for

the case of n = 3. The circuit equations (2)-(4) are calculated
by using the fourth-order Runge-Kutta method with the step
size h = 0.02. The circuit parameters are chosen as ε = 0.10,
αi = αa = 0.5, and β = 0.02.

As we expected, the bottom three oscillators (Osc11, Osc12,
and Osc13) are synchronized in in-phase and the top three
oscillators (Osc31, Osc32, and Osc33) are synchronized in anti-
phase.

However, we observe unexpected synchronization phe-
nomenon between the oscillators in each chain. Because the
oscillators in each chain are coupled by r vertically, we
expected that the three oscillators in the left chain (Osc11,
Osc21, and Osc31) and in the right chain (Osc13, Osc23, and
Osc33) are synchronized in in-phase. However, we can observe
from Figs. 2 and 3 that the oscillators in the second row (Osc21
and Osc23) have some amount of phase shift to the first row,
and those in the top row (Osc31 and Osc33) show larger phase
shift.
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Fig. 2. Computer simulation results (phase shift) for n = 3.
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Fig. 3. Computer simulation results (time waveform) for n = 3.

We could observe the same interesting unexpected synchro-
nization in real circuit experiments. Figure 4 shows the circuit
experimental results corresponding to Fig. 2.

IV. Theoretical Analysis

In order to explain the above-mentioned interesting synchro-
nization phenomenon, we focus on the power consumption of
the coupling resistors r in each chain.

First of all, we assume that

1. Oscillators in the bottom and the top rows are synchronized
in in-phase and anti-phase, respectively.
2. Phase shift between the neighboring two rows are the same.

These assumptions are reasonable, because of the coupling
strength of the bottom and the top rows and the symmetry of
the coupling structure.

Under the above assumption, the voltage of each oscillator



Fig. 4. Circuit experimental results (phase shift) for n = 3. C = 22nF, L =
10mH, Ri = Ra = 1.0kΩ, and r = 4.3kΩ. Horizontal and vertical: [5.0 V/div].

can be written as

vk1 = vk3 = Vm cos{τ + (k − 1)θ},

vk2 = Vm cos
{
τ +

(k − 1){(n − 1)θ − π}
n − 1

}
.

(5)

where θ is a phase shift between two neighboring rows. Also,
we define nonlinear oscillators as a first-order approximation.

Next, we consider the power consumption of the resistors in
the left and the right chains. Because the phase shift between
the two oscillators in these chains is θ, the average power over
one period can be calculated as

PI =
1
r

∫ 2π

0
(vk1 − v(k+1)1) dτ =

V2

r
(1 − cos θ). (6)

Next, the power consumption of the resistors in the middle
chain can be calculated as follows, because the phase shift
between the two oscillators in this chains is θ − π/(n − 1).

PII =
1
r

∫ 2π

0
(vk2−v(k+1)2) dτ =

V2

r

{
1 − cos

(
θ − π

n − 1

)}
. (7)

Hence, the total power consumptions are given as

Pn = 2 (n − 1) PI + (n − 1) PII

=
(n − 1) V2

r

{
3 − 2 cos θ − cos

(
θ − π

n − 1

)}
. (8)

(A) Case of n=3:
We consider the case of n = 3. Eq. (8) can be written as

P3 =
2V2

r

{
3 − 2 cos θ − cos

(
θ − π

2

)}
. (9)

It is considered that the total power consumption takes the
minimum value at the stable synchronization state. In order to

find the minimum value of P3, we differentiate P3 by θ.

dP3

dθ
=

2V2

r
(2 sin θ − cos θ) = 0. (10)

Calculating Eq. (10), we obtain

θ = arctan
1
2
= 26.56 [deg.] (11)

Table I summarizes the phase shifts of all the oscillators
obtained by computer simulations and the theoretical analysis.
Note that the single value of θ gives all the phase shifts
in theoretical analysis, namely we can calculate all these
data from Eq. (5) by substituting the value of Eq. (11).
We can see that computer simulation results agree with the
data obtained from the theoretical analysis. Small amount of
errors are considered to come from the assumptions of the
v − i characteristics of the nonlinear resistors Eq. (1) and the
constant voltage amplitude Eq. (5).

TABLE I
Phase shifts of oscillators for n = 3.

Simulation Theory Simulation Theory
[deg.] [deg.] [deg.] [deg.]

Osc11 0 0 Osc31 47.31 53.13
Osc12 0.94 0 Osc32 129.13 126.87
Osc13 0.15 0 Osc33 47.31 53.13
Osc21 23.56 26.56
Osc22 64.07 63.44
Osc23 23.56 26.56

(B) Case of n=9:
Next, we consider the case of n = 9. Computer simulated

results are shown in Figs. 5 and 6. We can observe interesting
synchronization phenomenon similar to the case of n = 3,
namely the bottom oscillators are synchronized in in-phase and
the top oscillators are synchronized in anti-phase, while the
middle oscillators (only the oscillators in 3rd, 5th, 7th rows are
shown in the figure) look like non-synchronization. However,
these phase shifts can be also explained by theoretical analysis
by considering the total power consumption.

For the case of n = 9, Eq. (8) can be written as

P9 =
8V2

r

{
3 − 2 cos θ − cos

(
θ − π

8

)}
. (12)

Hence, the stable state can be given by calculating the follow-
ing equation.

dP9

dθ
=

8V2

r

{
2 sin θ + sin

(
θ − π

8

)}
= 0. (13)

Calculating Eq. (13) by the Newton method, we obtain

θ = 7.45 [deg.] (14)

Table II summarizes the phase shifts of some oscillators for
the case of n = 9. The computer simulation results and the
theoretical analysis agree even better than the case of n = 3.
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Fig. 5. Computer simulation results (phase shift) for n = 9.

TABLE II
Phase shifts of oscillators for n = 9.

Simulation Theory Simulation Theory
[deg.] [deg.] [deg.] [deg.]

Osc11 0 0 Osc71 46.08 44.70
Osc12 0.32 0 Osc72 87.37 90.30
Osc13 0.022 0 Osc73 49.98 44.70
Osc31 14.62 14.90 Osc91 63.12 59.60
Osc32 30.67 30.10 Osc92 115.19 120.40
Osc33 15.90 14.90 Osc93 63.85 59.60
Osc51 29.90 29.80
Osc52 59.56 60.20
Osc53 32.47 29.80

V. Conclusions

In this study, we have investigated a synchronization phe-
nomenon observed from coupled oscillator chains whose edges
were coupled to constrain their phase states to generate a
frustration. By computer simulations and circuit experiments,
we could observe interesting unexpected synchronization phe-
nomenon. Theoretical analysis considering the total power
consumption of the coupling resistors could explain the stable
synchronization state.

The results in this study would be a good model of various
natural and artificial systems. For example, stone-paved square
of an old town (e.g. we observed one in Evora, Portugal) starts
from one edge of the square to line up stones in a regular
way like in-phase. However, sometimes the other edge of the
square has a different constraint like anti-phase. In that case,
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Fig. 6. Computer simulation results (time waveform) for n = 9.

frustrations occur somewhere in the square and they are not
compensated at one or some particular points but over a wide
area of the square. That is one example of synchronization
phenomena observed from oscillator networks with frustration.
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