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Abstract

In this study, we investigate behaviors of two identical cou-
pled Chua’s circuits whose parameters periodically varying in
associated with each of the period of internal state values. For
the periodically varying of the parameters, odd-order cycles
do not exist in this system. We observed coexistence of lots of
attractors which have different orders of cycles and different
synchronization states.

1. Introduction

Chaotic behaviors are observed in various research field
and cause interesting and complex phenomena. Coupled
chaotic systems attract extensive attention as good models
which describe the complimented phenomena in the natural
world. The field of coupled chaotic systems has been devel-
oped since the discovering of synchronization of chaotic tra-
jectories [1]. Studies about the coupled systems are carried
out in various field, such as in physics [2], biology [3, 4] and
engineering [5]. Furthermore, researchers suggest that syn-
chronization phenomena of coupled systems have some rela-
tionships with information processing in brain. So, to investi-
gate the coupled chaotic system is important to understanding
of information processing mechanism of the brain.

By the way, it has been reported that if an autonomic
neuron is influenced by external force, its characteristics are
changed such as the neuron behaves periodic or chaotic [6].
How to give periodic external force is thought about in vari-
ous ways, but we focus on a system whose parameter is forced
into periodic varying and investigate behavior of the system
and its coupling. The parametric force almost causes peri-
odic oscillation and chaos in a simple oscillator [7, 8, 9]. Pre-
viously, we have investigated coupled logistic maps whose
parameters are forced into periodic varying and observed in-
teresting characteristic behaviors of the parametrically forced
system [10].

In this study, we investigate behaviors of a two-coupled
parametrically forced Chua’s circuit. In the system, the linear
resistor of each parametrically forced Chua’s circuit is forced
into periodic varying in associated with the period of its inter-

nal state value and the two circuits are coupled by a resistor
in parallel. In the next section, we propose the coupled para-
metrically forced Chua’s circuit. In section 3, we investigate
bifurcations in the non-coupled parametrically forced Chua’s
circuit. Non-existence of odd order cycles and coexistence
of different attractors are observed. In section 4, we consider
the coupled parametrically forced Chua’s circuits. Coexisting
of many attractors whose synchronizations states are different
are observed. The last section is devoted to the conclusion.

2. Parametrically Forced Chua’s Circuit

In this study, we consider a coupled continuous-time sys-
tem whose parameter is forced into periodic varying. Chua’s
circuit is used as the continuous-time system. Tho Chua’s cir-
cuits are coupled by a resistor in parallel. The circuit model
of the coupled system is shown in Fig. 1. For this coupling,
v1k(k = 1, 2) affect to the other subcircuits with the coupling
intensity corresponding to the coupling resistor. The linear
resistors of the Chua’s circuits alternately changes from R1

to R2 depending on v2k. The switches which cause periodi-
cally varying of the resistors are controlled by v2k. Namely,
the switch of each of the subcircuits is controlled by the state
value of each subcircuit. The switches shift when v2k is equal
to 0 and changes from negative value to positive value. Fig-
ure 2 shows the relationship between v21 and the motion of
the switch. The linear resistor are changed every one period
of v2k.

The state equations of the parametrically forced Chua’s cir-
cuit are:

dv1k

dt
=

1
C1

{
1
R

(v2k − v1k) − f(v1k) +
1
r
(v1l − v1k)

}
dv2k

dt
=

1
C2

{
1
R

(v1k − v2k) + i3k

}
di3k

dt
= − 1

L
v2k

(k = 1, 2)(l = 1, 2, l 6= k)

,

(1)
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Figure 1: The circuit model of the parametrically forced
Chua’s circuit and the i − v characteristics of the nonlinear
resistor NR.

where, R alternately changes from R1 to R2 depending on
v2k; and

f(v1k) = Gbv1k +
1
2
(Ga −Gb){|v1k+E| − |v1k −E|} (2)

is the v − i characteristic of the nonlinear resistor NR with
a slope equal to Ga in the inner region and Gb in the outer
region. A typical v − i characteristic of NR is shown in
Fig. 1(b). By using following parameters and variables:

τ =
1

RC2
t, α =

C2

C1
, β =

C2

L

xk =
v1k

E
, y =

v2k

E
, z =

R

E
i3k,

(3)

the normalized circuit equations are given as:

dxk

dτ
= α

{
(yk − xk) − Rf(yk) +

R

r
(xl − xk)

}
dyk

dτ
= xk − yk + zk

dzk

dτ
= −βR2yk

.

(4)

3. Bifurcation Analysis in the Non-Coupled System
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Figure 2: The motion of the switch depending on v2.

We investigate bifurcations in the non-coupled parametri-
cally forced Chua’s circuit by carry out computer simulations
with fourth-order Runge-Kutta method when parameters are
set as α = 3.7, β = 4.5, Ga = −1.3 and Gb = −0.6. Fig-
ure 3 shows one-parameter bifurcation diagrams when R1 is
fixed and R2 varies. In Fig. 3(a), an order two cycle started
from the right side of the figure continues to undergo flip bi-
furcations and the bifurcation cascade give rise to chaos. On
the cascade, an order 1 periodic cycle appears at the point
R1 = R2. Except that point, all cycles are even order. In
Fig. 3(b), the order of an cycle started from R1 = R2 in-
creases by both of increase and decrease of R2 when R2

crossing through flip bifurcations. In the basic Chua’s circuit,
by decreasing the resistance of the linear resistor, the orders
of cycles simply increase when the cycles undergo flip bifur-
cations. Whereas, in the parametrically forced Chua’s circuit,
by decreasing R2, the orders of cycles increase and decrease
when the cycles undergo flip bifurcations.

Figure 4 shows attractors and their Poincaré maps on a
cascade when R1 is fixed and at 1.10 and R2 decreases. In
Fig. 4(a) and (a’), the parameters are the same, whereas initial
values are different. Two order 2 cycles coexist. By decreas-
ing R2, the cycles undergo a flip bifurcation and then become
order 4 cycles as shown in Fig. 4(b) and (b’). The cycles con-
tinue to undergo flip bifurcations and then give rise to chaos.
For some parameter regions, different order cycles coexist,
for instance, an order 6 cycle and a chaos coexist as shown
in Fig. 4(c) and (c’). More decreasing R2, one of the coex-
isting attractors disappears and a chaotic attractor remains as
shown in Fig. 4(d). Finally, a double-scroll chaotic attractor
is observed as shown in Fig. 4(e).

4. Synchronization in the Coupled System

In this section, we investigate coexistence of attractors ob-
served in two coupled parametrically forced Chua’s circuits
when the parameters are set as α = 3.7, β = 4.5, Ga =
−1.3, Gb = −0.6, R1 = 1.07, R2 = 1.0676 and r = 4.0.
For the parameters of the subcircuits, order 2 cycle and order
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Figure 3: One-parameter bifurcation diagrams for the fixed
parameters α = 3.7, β = 4.5, Ga = −1.3 and Gb = −0.6
and variant R2. (a) R1 = 1.10. (b) R1 = 1.07

4 cycle coexist in the non-coupled case.
Figure 5 shows attractors and phase differences observed

in computer simulations. Four attractors coexist as shown in
Fig. 5. Three of the four coexisting attractors are order 2 cy-
cles, and the remain coexisting attractor is order 4 cycle. In
any case of the coexisting attractors, the two subcircuits are
synchronized at the in-phase. Here, we focus on the motions
of the switches. We can see that there are two pattern of the
motion of the switch that the two switches shift at the in-phase
and the opposite-phase. By the coupling, the motions of the
switches are attracted at the in-phase or the opposite-phase.
For the motions of the switches, lots of stable states are con-
structed.

Figure 6 shows basins on (x1, z1) phase plane when y1 = 0
and (x2, y2, z2) = (0.3828, 0, 0.485) which is a coordinate
of the orbit shown in Fig. 5(2). In the figure, red, blue, yel-
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Figure 4: Attractors observed in the computer simulations for
α = 3.7, β = 4.5, Ga = −1.3, Gb = −0.6 and R1 = 1.07.
(a)R2 = 1.08. (b)R2 = 1.07. (c)R2 = 1.056. (d)R2 = 1.05.
(e)R2 = 1.04.

low and green colored regions correspond that the trajectories
started from those regions converge the attractors shown in
Fig. 5(1), (2), (3) and (4), respectively. Geometric patterns
are presented fractal structures are confirmed.

5. Conclusions

In this study, we investigated synchronization in two iden-
tical coupled Chua’s circuits whose parameters periodically
varying in associated with each of the period of internal state
values. For the periodically varying of the parameters, odd-
order cycles do not exist in this system. We have confirmed
coexistence of lots of attractors which have different orders of
cycles and different synchronization states. By the coupling,
the motions of the switches are attracted at the in-phase or the
opposite-phase. Then, the motions of the switches cause lots
of stable states.
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Figure 5: Attractors and phase differences in the coupled parametrically forced Chua’s circuit.
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Figure 6: Basins on (x1, z1) phase plane when y1 = 0 and
(x2, y2, z2) = (0.3828, 0, 0.485)
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