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Abstract

This paper analyzes a stochastic resonance (SR) in a
quadruple-well potential, which extended the SR in a double-
well potential, to control of SR. For achieving the control of
SR, it is important to analyze the state of the SR by injecting
the noise. In this study, we calculate existence probabilities
of the SR’s state to analyze how the state changes by a noise
intensity.

1. Introduction

Stochastic resonance (SR) is a nonlinear phenomenon in
which a responsiveness of a system is improved by inject-
ing suitable noise to certain nonlinear systems. Recently,
SR has attracted a great deal of attention from a variety of
researchers[1]–[7]. In this paper, we consider that SR is ap-
plied to a communication system which is one of engineering
systems. In standard communication systems, the signal de-
tection becomes difficult according to increase a noise level.
By applying SR to the communication systems, we expect
that it is possible to detect the signal which is influenced sig-
nificantly by noise. For robustly detecting the signal in the
communication system using SR, a control of SR by noise is
very important task. Therefore, we consider that it is neces-
sary to investigate a relationship between SR and noise.

Based on the above research background, this paper ana-
lyzes SR with various noise intensities. Especially, we focus
on a state of SR depending on the noise intensity. In Fig. 1,
we show a mechanism of SR model in a double-well poten-
tial which is well-known as a typical bistable SR model. Hear,
the ball (particle) in this figure is a state of SR. In this model,
the particle stays in the one potential well unless the noise, as
shown in Fig. 1(a). However, a height of a potential barrier,

which is a center of SR in Fig. 1(a), is changed by inject-
ing the noise to SR model, and the particle hops from one
potential well to the other one, as shown in Fig 1(b). Thus,
we consider that it is important to analyze the state of SR by
injecting the noise for achieving the control of SR.

In this study, we therefore calculate existence probabilities
of the state (particle) to analyze how the state changes by the
noise intensity. For analyzing the existence probabilities of
the particle, this paper uses a SR in a quadruple-well poten-
tial which added one dimension in SR model in a double-well
potential. By analyzing the existence probabilities of the par-
ticle in the SR with various noise intensities, we discuss the
capability of the control of SR by the noise.

2. SR in double-well potential

We briefly explain SR in the double-well potential. In
Ref. [7], the bistable SR is performed by following equations.

dx

dt
= f(x) + Dn(t) + s(t), (1)

s(t) = A sin(2πf0t), (2)

f(x) = −dU0(x)
dx

, (3)

U0(x) = −1
2
x2 +

1
4
x4. (4)

Where U0(x) is a bistable potential having two local mini-
mums (i.e., two potential wells), x is a state variable, s(t) is
an input signal, A is an amplitude of the input signal, n is
assumed to be the additive white Gaussian noise (AWGN),
D is an intensity of noise. An effective potential U(x, t) is
described as follows.
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Figure 1: Mechanism of SR in double-well potential.

U(x, t) = U0(x) + xs(t)

= −1
2
x2 +

1
4
x4 + xA sin(2πf0t). (5)

The bistable system has two stable states (1 or −1). Thus, we
can regard the two stable states as 1bit data in the communi-
cation systems.

3. SR in quadruple-well potential

As described in Sec. 1, this paper uses the SR in the
quadruple-well potential, which added one dimension in SR
model in a double-well potential, for analyzing the existence
probabilities of the particle. In this study, we add a new state
variable “y” to the bistable system and extend the system to
SR in the quadruple-well potential.

Here, we explain equations of SR in the quadruple-well
potential. First, based on Eq. (1), the equation of the state x
is described as follows.

dx

dt
= f(x) + Dxnx(t) + s(t). (6)

Where nx is noise injected to the state x, Dx is an intensity
of noise for the state x. Next, the equation of the new state y
is described as follows.

dy

dt
= f(y) + Dyny(t) + s(t), (7)

f(y) = −dU0(y)
dy

, (8)

U0(y) = −1
2
y2 +

1
4
y4, (9)
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Figure 2: Four-ideal-stable states of SR in quadruple-well po-
tential.

Where ny is noise injected to the state y, Dy is an intensity
of noise for the state y.

SR in the quadruple-well potential has four local mini-
mums, i.e., four potential wells ((1, 1), (−1, 1), (1,−1) and
(−1,−1)). Thus, we can regard the two stable states as 2bit
data in the communication systems.

In this study, nx and ny are assumed to be AWGN. Ad-
ditionally, nx and ny are different from each other. In other
words, nx and ny are independent of each other.

4. Simulation results and discussions

4.1. Simulation conditions

Using the above system, we carry out computer simula-
tions. In the simulation, the two states (particles) are ex-
pressed in (x, y) planes as a coordinate (point (x, y)). As
parameters of the simulation, the initial condition of x and y
is “1”, t = 10, 000, dt = 0.01. In addition, we use two types
of the noise parameter for the simulations:

(1) Same noise intensity (Dx = Dy),

(2) Different noise intensity (Dx = 10 (fixed), Dy: variable).

Figure 2 shows four-ideal-stable states of SR in the
quadruple-well potential in (x, y) plane. By changing the
noise intensity, we observe various behaviors of the particles
and calculate the existence probability of the particle in each
potential well.

4.2. Results of same noise intensity (Dx = Dy)

Table 1 shows existence probabilities of SR in the
quadruple-well potential for Dx = Dy . In addition, Fig. 3
shows some outputs of the SR based on Tab. 1. From these
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Figure 3: Outputs of SR in quadruple-well potential (Dx = Dy): (a) Dx = Dy = 3, (b) Dx = Dy = 10, (c) Dx = Dy = 30.

Table 1: Existence probabilities of (x, y) (Dx = Dy)
Existence probabilities of (x, y) [%]

Dx = Dy (1, 1) (−1, 1) (1,−1) (−1,−1)
0 100 0 0 0
3 23.0 25.2 19.8 32.0
7 26.2 22.1 17.0 34.7
10 33.2 16.1 13.4 37.3
20 41.1 7.5 8.9 42.5
30 41.1 7.0 8.3 43.6

results, we can see that the particles (points (x, y)) are almost
evenly distributed in four potential wells when Dx and Dy are
small. However, the existence probability is biased according
to increasing the noise intensity. Especially, the particles con-
verge on two potential wells ((1, 1) and (−1,−1)) , as shown
in Fig. 3(c). In other words, the particles only pass through
the wells of (−1, 1) and (1,−1) when Dx and Dy are large.
Next, we observe the motion of the particles from Fig. 3. As
one can see, although the motion of the particles is small in
each potential well when Dx and Dy are small (Fig. 3(a)), the
particles actively move in the wells of (1, 1) and (−1,−1)
according to increasing the noise intensity (Fig. 3(c)). There-
fore, it can be said that the particles do not stay for long term
in one potential well when Dx and Dy are large, and the state
transition occurs frequently in the wells.

4.3. Results of different noise intensity (Dx = 10 (fixed),
Dy: variable)

Table 2 shows existence probabilities of SR in the
quadruple-well potential when Dx = 10 and Dy is variable.
In addition, Fig. 4 shows some outputs of the SR based on

Table 2: Existence probabilities of (x, y) (Dx = 10 (fixed),
Dy: variable).

Existence probabilities of (x, y) [%]
Dy (1, 1) (−1, 1) (1,−1) (−1,−1)
0 46.6 53.4 0 0
3 25.7 22.5 20.9 30.9
7 29.1 19.2 17.5 34.2
20 35.3 13.3 11.3 40.1
30 31.8 16.3 14.8 37.1

Tab. 2. As a matter of course, it can be observed that the exis-
tence probabilities of Tab. 2 are different from that of Tab. 1.
Especially, we focus on the larger Dy (Dy = 20 and 30). The
existence probabilities of (−1, 1) and (1,−1) when Dy = 20
and 30 in Tab. 2 are larger than that of Dx = Dy = 20 and
Dx = Dy = 30 in Tab. 1. Since the influence of the noise
that the particle of x-component receives is smaller than that
of y-component, the probability that the two-state transition
occurs simultaneously becomes small. Thus, we consider that
it is easy to change the existence probabilities using the differ-
ent noise intensity. In other words, it is possible that to use the
different noise intensity is effective for controlling the state
of the SR in the quadruple-well potential. However, it can
be also confirmed that the existence probability in Tab. 2 is
biased in two potential wells ((1, 1) and (−1,−1)) according
to increasing the noise intensity in common with Dx = Dy .
We discuss the reason for this in Sec. 4.4.

4.4. Discussions

Here, we discuss that the reason for the biased existence
probability according to increasing the noise intensity. The
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Figure 4: Output of SR in four-stable state (Dx = 10 (fixed), Dy: variable): (a) Dy = 3, (b) Dy = 20, (c) Dy = 30.

major reason for this is that s(t) dose not depend on the state
of x and y, as shown in Eq. 2. The states of x and y in SR
change independently of each other depending on each input
signal and each noise. Thus, the particles are biased to the
wells of (1, 1) and (−1,−1). Therefore, we consider that to
analyze the SR using the input signal which x and y influence
mutually is our future work.

5. Conclusions

In this study, we have analyzed existence probabilities of
the particle in SR in the quadruple-well potential with vari-
ous noise intensities. As results of computer simulations, we
have found that it is possible that to use the different noise
intensity is effective for controlling the state of the SR in the
quadruple-well potential. In addition, it has been confirmed
that the existence probability is biased in the wells of (1, 1)
and (−1,−1) due to s(t) which dose not depend on the state
of x and y.
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