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Abstract—In this study, we investigate bifurcations in coupled
logistic maps whose parameters are forced into periodic varying
in two-dimensional case. On a parameter plane, crossroad areas
centered at fold cusp points regarding to several orders are
detected. Especially, we investigate bifurcation curves regarding
order 2 periodic orbits in detail. From the investigation, a foliated
bifurcation structure is drawn, and existence domains of stable
order 2 cycles with synchronization or without synchronization
are detected. Moreover, evolution of bifurcation curves with
respect to a coupling intensity is analyzed.

I. INTRODUCTION

The study of information processing in brain using nonlinear
models has attracted extensive attention during the last years.
This attention is based on the consequence that neuron activity
can be described by deterministic dynamical nonlinear equa-
tions. Indeed, studies by using equipments which record global
brain activity like electroencephalogram and thermogram are
carried out. However, there are problems depending on capa-
bilities of the equipments. Therefore, we come up with the way
to solve the problem by using model of brain with nonlinear
systems. It is rich worth to introduce models to investigate
nonlinear neuronal activities and mutual influences between
neurons in the neural networks by using nonlinear maps in
order to understand brain activities. It is known that if an auto-
nomic neuron is influenced by external force, its characteristics
are changed such as the neuron behaves periodic or chaotic
[1]. How to give periodic external force is thought about in
various ways, but we focus on a system whose parameter is
forced into periodic varying and investigate behavior of the
system and its pint-size coupling. The fundamental researches
of these small coupled nonlinear systems are important for
the investigation of global brain activities and the modeling,
since we can think that general properties of large coupled
nonlinear systems can de deduced from those of the its small
size coupling system.

As the research for a system with parameter forced into
periodic varying, [2] reports that the almost periodic oscillation
occurs in a simple oscillator including parametric excitation if
nonlinear inductor has saturation characteristic. Additionally
the occurrence of chaos is referred in [3] and [4]. Previously,

we have investigated synchronization phenomena in coupled
logistic maps involving parametric force [5].

This study also deals with the coupled logistic maps whose
parameters are forced into periodic varying. We investigate
bifurcations in two-dimensional cases. As previously said, this
low dimension can give rise to specific phenomena that we
can explain and that are basic phenomena for the behavior of
higher size neural networks. From the obtained bifurcations,
foliated bifurcation structure is drawn, and existence domain
of stable order 2 cycles with synchronization or without syn-
chronization are detected. Moreover, evolution of bifurcation
curves with respect to a coupling intensity is investigated. The
bifurcation curves which appear in coupled case spread by
increasing of the coupling intensity. The evolution with respect
to the coupling is analytically proved.

II. SYSTEM

This paper treats a two-dimensional system. This system is
obtained from the coupling with mutually influencing scheme
of the same one-dimensional system whose parameters are
forced into periodic varying. The system is described as:

T :


x(n + 1) = (1 −

ε

2
)F (x(n), αf (n)) +

ε

2
F (y(n), αf (n))

y(n + 1) = (1 −
ε

2
)F (y(n), αf (n)) +

ε

2
F (x(n), αf (n))

(n = 1, 2, ...)

,

(1)
and

αf (n) =


α1, for each even value of “n”

α2, for each odd value of “n”
(n = 1, 2, ...)

.

(2)
The parameter αf alternately changes from α1 to α2 and
ε ∈ (0, 1). This system is not continuous in iteration because
αf is periodically changed. Whereas, the twice iteration of
this system is considered as continuous system since its
periodicity. This system has the above characteristics. From
this characteristics, non-existence of odd order cycle except
fixed point and special situation α1 = α2 are prouved in
[6]. In this study, F is a one-dimensional logistic map and
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(a)

(b)

Fig. 1. Representation of the parameter plane (α1, α2) for ε = 0.24. (b) is
an enlargement of (a).

is described as:

F (x(n), αf (n)) = αf (n)x(n)(1 − x(n))
F (y(n), αf (n)) = αf (n)y(n)(1 − y(n)). (3)

III. BIFURCATIONS

Here, we consider the two-dimensional case, two paramet-
rically forced logistic maps are coupled.

Figure 1 shows bifurcation diagrams for ε = 0.24 and
its enlargement. Each colored domain indicates existence of
at least one stable cycle whose order corresponds to upper
colored squares in the figure. Figure 2 shows bifurcation
curves of order 2, 4 and 8 cycles indicating only the curves
according to boundaries between existence domains of sta-
ble cycles. Bifurcation curves are obtained using analytical-
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(b)

Fig. 2. Bifurcation curves of order 2, 4 and 8 cycles indicating only the fold
and flip curves according to boundaries between existence domains of stable
cycles.

numerical methods [7]. In the figure, Λj
(k)0

, Λ̄j
(k)0

, Λj
k and

Γk denote fold, pitchfork, flip and Neı̈mark-Sacker bifurcation
curves, respectively. The index j is a number characterizing
the considered order k cycle. Cj

k denotes a cusp point of
an order k cycle. The bifurcation curves well correspond to
the boundaries between colored domains in Fig. 1. On the
parameter plane, crossroad areas (in the sense of [8]) centered
at fold cusp points regarding to several orders can be detected.

A. Foliated bifurcation structure of order 2 cycle

Here, bifurcations regarding order 2 cycle are considered.
Figure 3 shows fold, flip, pitchfork and Neı̈mark-Sacker bi-
furcation curves. In the figure, arrowed lines correspond to
cascades of order 2 cyclic points associated with fold and
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Fig. 3. Bifurcation curves of order 1 cycle of T 2
odd for ε = 0.24.

pitchfork bifurcations at which heads of the arrowed lines
point. Christcrosses on the arrowed lines indicate that the order
2 cyclic points on the cascades undergo flip bifurcations. For
instance, an order 2 cycle on the arrowed line starting from
Λ3

(2)0
in left upper side of the figure undergoes flip bifurcations

Λ1
2 and Λ2

2, and finally reaches to a fold bifurcation Λ1
(2)0

at
which the head of the arrowed line points. The cycle on the
cascade is not associated with other bifurcations like Λ̄1

(2)0
,

Λ3
2, Λ1′

2 , Λ2′

2 and left side of Λ1
(2)0

through which the arrowed
line passes. On the other hand, an order 2 cycle on the arrow
line starting from Λ3

(2)0
in right lower side of the figure

undergoes flip bifurcations Λ1′

2 and Λ2′

2 , and finally reaches
to a fold bifurcation Λ1

(2)0
at which the head of the arrowed

line points. The cycle on the cascade is not associated with
other bifurcations. From these relationships, Λ1

(2)0
, Λ3

(2)0
, Λ1

2,
Λ2

2, Λ1′

2 and Λ2′

2 organize a crossroad area centered at a fold
cusp C1

2 . In the same way, Λ2
(2)0

, Λ4
(2)0

, Λ3
2 and Λ3′

2 organize
a crossroad area centered at a fold cusp C2

2 . Λ2
(2)0

, Λ̄1
(2)0

, Λ4
2,

Λ4′

2 organize a communication area including codimension-2
points. Here, it is detected that arrow lines starting from Λ4

(2)0

and Λ̄1
(2)0

reach to Λ2
(2)0

. This is because Λ2
(2)0

is associated
to four cycles.

In order to understand relationships between bifurcation
curves and appearance or disappearance of cycles and their
stabilities, we consider a cascade when α1 is fixed (α1 = 4)
and α2 is increasing. Relationships between bifurcation curves
and appearance or disappearance of cycles and their stabilities
on the cascade are represented in Fig. 4. In the figure, dots
indicate that cycles are related to bifurcations denoted in the
top of the figure. At the points, appearance or disappearance of
cycles occur and their stability changes. Because we focus on
order 2 cycle, we do not consider unstable order 4 cycles and
indicate only appearance of stable order 4 cycles in the figure.
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Fig. 4. Representation of bifurcations of order 2 cycles of T and its stabilities
when α1is fixed and α2 increases. We do not consider unstable order 4 cycle.
SNj

k
, SAj

k
, UNj

k
and USj

k
indicate stable node, saddle, unstable node and

unstable spiral of order k cyclic point, respectively. The index j characterizes
the permutation of the order k cycle. 0 is fixed point at (x, y) = (0, 0).

With increasing α2, cycles appear through fold and pitchfork
bifurcations, and the number of cycles finally becomes 15. It
confirms that Λ2

(2)0
relates to four distinct cycles.

From the above results, a foliated bifurcation structure,
three-dimensional representation, is drown up in Fig. 5 as
introduced in [8]. The foliated bifurcation structure is or-
ganized by five organizations that each organization has a
fold cusp and the organizations overlap. Organization 2 and
organization 2’ have the same structures. Organization 3 and
organization 3’ also have the same structures. Organization 3
and organization 3’ appear from Λ2

(2)0
in the center sheet of

organization 1 and construct shapes like pockets. In the figure,
a blue-slushed domain corresponds to existence of a stable
fixed point (x, y) = (0, 0). Red-slushed domains correspond
to existence of stable order 2 cycles. It can be seen that stable
order 2 cycles exist in organization 1, organization 3 and
organization 3’. All coordinates of order 2 cycles belonging
to organization 1 correspond to x = y. Therefore, in the
parameter domain according to red-slushed domains in the
organization 1, synchronized order 2 cycles exist. On the other
hand, all coordinates of order 2 cycles belonging to the other
organizations correspond to x 6= y. Therefore, in the parameter
domain according to red-slushed domains in the organization
3 and the organization 3’, unsynchronized order 2 cycles exist.

B. Evolution of bifurcation curves for ε

Here, evolution of bifurcation curves with respect to third
parameter ε is investigated. Figure 6 shows bifurcation curves
with different values of ε. When ε is small, Λ4

(2)0
is close

to Λ3
(2)0

, Λ2
(2)0

and Λ̄1
(2)0

are close to Λ1
(2)0

, Λ2
2 and Λ3

2 are
close to Λ1

2, Λ2′

2 and Λ3′

2 are close to Λ1′

2 , Λ4
2 and Λ4′

2 are
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Fig. 5. Three dimensional representation of Fig. 3.

close to parts of Λ1
2 and Λ1′

2 . With increasing ε, Λ2
(2)0

, Λ4
(2)0

,
Λ̄1

(2)0
, Λ2

2, Λ2′

2 , Λ3
2, Λ3′

2 , Λ4
2 and Λ4′

2 spread and finally tend
toward infinity when ε = 1, while Λ1

(2)0
, Λ3

(2)0
, Λ1

2 and Λ1′

2 do
not move. Here, we prove these obtained results, analytically.
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Fig. 6. Evolution of bifurcation curves with respect to third parameter ε.
(a)ε = 0.05. (b)ε = 0.70.

Λ3
(2)0

and Λ4
(2)0

are described as

Λ3
(2)0

: α1α2 = 1

Λ4
(2)0

: α1α2 =
1

1 − 2ε + ε2

. (4)

From these equations, Λ3
(2)0

is not related to ε and Λ4
(2)0

is
related to ε and tends toward infinity at ε = 1. It is difficult to
solve other bifurcation curves analytically. Then, we consider
crossing points where fold and pitchfork bifurcation curves
cross the diagonal of (α1, α2) parameter plane. We denote the
crossing points where pitchfork bifurcation curves Λ̄1

(2)0
cross
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the diagonal as ∗Λ̄1
(2)0

. The crossing points are described as

C1
2 : α1 = α2 = 3

C2
2 : α1 = α2 =

−1 + ε −
√

ε2 − 2ε + 4
−1 + ε

∗Λ̄1
(2)0

: α1 = α2 = 2 +
1

1 − ε

. (5)

From these equations, C1
2 is constant with respect to ε, and

C2
2 and ∗Λ̄1

(2)0
relate to ε and tend toward infinity at ε = 1.

Only the crossing points between bifurcation curves and the
diagonal can be solved, analytically. However, the crossing
points are parts of bifurcation curves and each bifurcation
curve is continuous. Therefore, it is clear that the evolution
of the crossing points is correlated with the evolution of their
whole bifurcation curves.

IV. CONCLUSION

In this study, we investigated bifurcations in coupled logistic
maps whose parameters are forced into periodic varying in
two-dimensional case. From the investigation of bifurcation
diagrams and bifurcation curves, existence domains of several
stable cycles and chaotic orbits have been detected. The
bifurcation curves construct crossroad areas centered at fold
cusp points. Especially, we investigated bifurcation curves
regarding to order 2 cycle in detail. From the investigation, a
foliated bifurcation structure has been drawn, and existence of
synchronized and non-synchronized cycles have been derived.
Moreover, evolution of bifurcation curves with respect to a
coupling intensity was investigated. The bifurcation curves
caused by the coupling spread by increasing of the coupling
intensity and tend toward infinity for the coupling intensity
beeing equal to 1. The evolution with respect to the coupling
has been analytically proved.
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