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Abstract—We have been observing synchronization phe-
nomena on coupled oscillators systems. A special phe-
nomenon was observed on lattice oscillators by using com-
puter simulations. The special phenomenon is a phenomenon
changing phase states between two adjacent oscillators from
in-phase synchronization to anti-phase synchronization or
from anti-phase synchronization to in-phase synchronization
in steady state. We call the phenomenon phase-inversion
waves. In this paper, we clarify a mechanism of penetra-
tion between two phase-inversion waves in in-and-anti-phase
synchronization on the lattice system. Furthermore, we an-
alyze phase-inversion waves on the coupled oscillators sys-
tems as a lattice by using actual circuit experiments and com-
puter simulations.

1. Introduction

There are a lot of synchronization phenomena in this
world. For example, we can observe biological clocks, the
synchronization of many fireflies, synchronization in com-
bustion of candle, and so on. Furthermore, synchronization
phenomena play an important role in biological and physio-
logical systems[1]-[2].

In our previous study, we observed particular synchro-
nization phenomena on coupled oscillators systems by using
van der Pol oscillators which are coupled by inductors as a
lattice[3]-[4]. We clarified regions which the phase-inversion
waves can be observed in in-and-anti-phase synchronization
when N = 9, and a mechanism of propagation of a phase-
inversion wave in in-and-anti-phase synchronization. These
studies analyzed by using computer simulations. In other
hand, on a ladder system, we analyzed the phase-inversion
waves by using actual circuit experiments[5].

In this study, we clarify a mechanism of penetration be-
tween two phase-inversion waves in in-and-anti-phase syn-
chronization using instantaneous frequency of each oscilla-
tor and phase differences between adjacent oscillators on the
lattice system. Furthermore, we analyze the phase-inversion
waves on the coupled oscillators systems as a lattice by using
actual circuit experiments and computer simulations.

OSC OSC OSC

OSC OSC OSC

OSC OSC OSC

L0 L0 L0

L0

L0

L0

(0,0) (0,1)

(1,0)
(1,1)

(N-1,0)

(0,N-1)

OSC

i(k,l)

v(k,l)

(N-1,N-1) R

+
-

3

R1

R2

L C

Figure 1: Circuit model

2. Circuit model
The van der Pol oscillators are coupled by inductors L0

as a lattice(see Fig. 1). The numbers of column and row of
this system are assumed as “N” respectively. We name each
oscillator OSC(k,l)(0 ≤ k, l ≤ N − 1). A voltage of each
oscillator is named v(k,l), and a current of a inductor of each
oscillator is named i(k,l)(see Fig. 1).
3. Computer simulations

We observe on the coupled oscillators systems as a lattice
by using computer simulations. An equation of the nonlinear
negative resistor is shown as Eq. (1). Circuit equations of
this circuit are normalized by Eq. (2). The normalized circuit
equations are shown as Eqs. (3)–(7).

ir(v(k,l)) = −g1v(k,l) + g3v3
(k,l). (1)
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√

Cg1
3Lg3
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√

g1
3g3

y(k,l),

t =
√

LCτ, d
dτ = “ · ”, α = L
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√
L
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(2)

[Corner–top] (left:(a, b)=(0, 1). right:(a, b)=(N − 1,N − 2).)

dx(0,a)

dτ = y(0,a), (3)
dy(0,a)

dτ = −x(0,a) + α(x(0,b) + x(1,a) − 2x(0,a))

+ ε(y(0,a) − 1
3

y3
(0,a)).

[Corner–bottom] (left:(a, b)=(0, 1). right:(a, b)=(N − 1, N − 2).)
dx(N,a)

dτ = y(N,a), (4)
dy(N,a)

dτ = −x(N,a) + α(x(N−1,a) + x(N,b) − 2x(N,a))

+ ε(y(N,a) − 1
3 y3

(N,a)).
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Figure 2: Computer simulation result of the phase-inversion
waves in in-and-anti-phase synchronization when N = 6.

[Center] (0 < k < N − 1. 0 < l < N − 1.)
dx(k,l)

dτ = y(k,l), (5)

dy(k,l)

dτ = −x(k,l) + α(x(k+1,l) + x(k−1,l) + x(k,l+1) + x(k,l−1)

− 4x(k,l)) + ε(y(k,l) − 1
3 y3

(k,l)).

[Edge]
(top:(a, b)=(0, 1).bottom:(a, b)=(N−1,N−2).both:0 < l < N−1.)

dx(a,l)

dτ = y(a,l), (6)

dy(a,l)

dτ = −x(a,l) + α(x(a,l−1) + x(a,l+1) + x(b,l) − 3x(a,l))

+ ε(y(a,l) − 1
3 y3

(a,l)).

(left:(a, b)=(0,1). right:(a, b)=(N−1,N−2). both:0 < k <
N − 1.)

dx(k,a)

dτ = y(k,a), (7)

dy(k,a)

dτ = −x(k,a) + α(x(k−1,a) + x(k+1,a) + x(k,b) − 3x(k,a))

+ ε(y(k,a) − 1
3 y3

(k,a)).

The α corresponds to a coupling parameter. The ε corre-
sponds to a nonlinearity of each oscillator. This circuit is
simulated by using the fourth order Runge-Kutta method and
Eqs. (3)-(7). A computer simulation result of the phase-
inversion waves in in-and-anti-phase synchronization when
N = 6 are shown in Fig. 2. We observe laterally-propagated
and longitudinally-propagated phase-inversion waves in in-
and-anti-phase synchronization. The Fig. 2–A expresses an
attractor of each oscillator(current vs. voltage). The Fig. 2–
B expresses itinerancy of phase difference by which sum of
voltages of adjacent oscillators is shown along the time(sum
of voltage vs. time). The coupling parameter α is fixed as
0.05, and nonlinearity ε is fixed as 0.15.

Figure 3 shows the signs of the initial values of the volt-
ages and currents of each oscillator when the Fig. 2 can be
observed. We can observe some characteristics of phase-
inversion waves in in-and-anti-phase synchronization. These
characteristics are a propagation, a penetration, a reflection
at an edge, a reflection at a corner and a reflection between
two phase-inversion waves(see Fig. 2). These characteristics
are shown in Table 1.
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Figure 3: Sign of initial value of each oscillator when the
Fig. 2 can be observed.

3.1. Penetration mechanism
We can observe a phenomenon that a vertical phase-

inversion wave and a horizontal phase-inversion wave pen-
etrate each other in in-and-anti-phase synchronization. This
mechanism is analyzed by using instantaneous frequency of
each oscillator and phase differences between adjacent oscil-
lators when N = 19.

An equation of the instantaneous frequency of OSC(k, l)
is obtained as Eq. (8).

f(k,l)(a) =
1

τ(k,l)(a) − τ(k,l)(a − 1)
. (8)

The instantaneous frequency is named f(k,l)(a) where “a” ex-
presses the number of times of the positive peak value of
the voltage. Time of a-th positive peak value of the voltage
of OSC(k, l) is assumed as τ(k,l)(a)(see Fig. 4). Similarly,
τ(k+1,l)(a) and τ(k,l+1)(a) are decided. Three frequencies are
observed in this system. To consider of the synchroniza-
tions for the vertical direction and for the horizontal direc-
tion are needed, because this system is 2 dimensional array.
The in-phase synchronization and the anti-phase synchro-
nization exist. Therefore, three types of synchronizations are
observed as follows:

1. OSC(k, l)–OSC(k, l + 1), OSC(k, l)–OSC(k, l − 1),
OSC(k, l)–OSC(k + 1, l), and OSC(k, l)–OSC(k − 1,
l) are the in-phase synchronization.

2. {� (OSC(k, l)–OSC(k, l − 1), and OSC(k, l)–OSC(k,
l+1) are a same phase synchronization state, and OSC(k,
l)–OSC(k−1, l), and OSC(k, l)–OSC(k+1, l) are another
phase synchronization state.} , {� OSC(k, l)–OSC(k−1,
l), and OSC(k, l)–OSC(k, l − 1) are a same phase syn-
chronization state, and OSC(k, l)–OSC(k + 1, l), and
OSC(k, l)–OSC(k, l+1) are another phase synchroniza-
tion state.} , {� OSC(k, l)–OSC(k − 1, l), and OSC(k,
l)–OSC(k, l+1) are a same phase synchronization state,
and OSC(k, l)–OSC(k, l−1), and OSC(k, l)–OSC(k+1,
l) are another phase synchronization state.}

3. OSC(k, l)–OSC(k, l + 1), OSC(k, l)–OSC(k, l − 1),
OSC(k, l)–OSC(k + 1, l), and OSC(k, l)–OSC(k + 1,
l) are the anti-phase synchronization.

An instantaneous frequency f(k,l) of OSC(k, l) is obtained in
each synchronization-type. The 1st situational synchroniza-
tion frequency is called fin−in. The 2nd situational synchro-
nization frequency is called fin−anti. The 3rd situational syn-
chronization frequency is called fanti−anti. The phase differ-
ence is calculated as follows. A phase difference between
OSC(k, l) and OSC(k + 1, l) and a phase difference between
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Table 1: Characteristics of the phase-inversion waves in in-and-anti-phase synchronization.

Names of characteristics Phenomena

Propagations
The phase-inversion waves propagate for vertical direction or horizontal direction. The vertical phase-inversion
waves independently move from the horizontal phase-inversion waves.

Penetrations
Two phase-inversion waves arrive at an oscillator from vertical direction and horizontal direction, and each phase-
inversion wave penetrates each other.

Reflections at an edge
When a phase-inversion wave arrives at an edge, the phase-inversion wave reflects and propagates to where they
came from. Sometime this phenomenon is happened with penetration.

Reflections at a corner
When two phase-inversion waves coming from the vertical direction and the horizontal direction arrive at a corner
oscillator at the same time, the phase-inversion waves reflect and propagate to where they came from.

Reflections between two
phase-inversion waves

When two phase-inversion waves coming from the opposite directions arrive to two adjacent oscillator at same time,
the phase-inversion waves reflect and propagate to where they came from.

τ(k, l)(a)V

V τ(k+1, l)(a)

OSC(k, l)

OSC(k+1, l)

Time

Time

aa-1 a+1

aa-1 a+1

Figure 4: The detection method of frequencies and the phase
differences.

OSC(k, l) and OSC(k, l + 1) are obtained. The phase differ-
ences are assumed as Φ(k,l)(k+1,l)(a) and Φ(k,l)(k,l+1)(a) respec-
tively. The Φ(k,l)(k+1,l)(a) and Φ(k,l)(k,l+1)(a) are obtained by
Eq. (9)(see Fig. 4).

Φ(k,l)(k+1,l)(a) =
τ(k,l)(a) − τ(k+1,l)(a)
τ(k,l)(a) − τ(k,l)(a − 1)

× 360 [degree]

Φ(k,l)(k,l+1)(a) =
τ(k,l)(a) − τ(k,l+1)(a)
τ(k,l)(a) − τ(k,l)(a − 1)

× 360 [degree].
(9)

Penetration mechanism is shown in Table 2(see Fig. 5). In
Fig. 5(a), the vertical axis is instantaneous frequency, and
horizontal axis is time. In Fig. 5(b), the vertical axis is the
phase difference, and the horizontal axis is time.

4. Actual circuit experiments
We confirm which the phase-inversion waves can be stable

and actually existing in in-and-anti-phase synchronization on
the coupled oscillators systems as a lattice by using actual
circuit experiments. The actual circuit experimental result of
N = 6 shows in Fig. 6. We can observe same phenomenon
by using the computer simulation(See Fig 7). Figures 8 and
9 are extracted from the Figs. 6 and 7. The phase-inversion
waves of horizontal direction exist in in-and-anti-phase syn-
chronization. We can consider that the small difference be-
tween these two results differ from the resistances in real in-
ductors and variations on electric elements.

5. Conclusion
We clarified a mechanism of penetration between two

phase-inversion waves in in-and-anti-phase synchronization
on the lattice system. Furthermore, we analyzed of phase-
inversion waves on the coupled oscillators systems as a lat-
tice by using actual circuit experiments and computer simu-
lations. We observed same phenomenon in the actual circuit
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Figure 5: Transitions of phase difference and frequencies by
penetration between two phase-inversion waves on in-and-
anti-phase synchronization.

experimental results and the computer simulation results(see
Figs. 6 and 7). We proved that the phase-inversion waves can
be stable and actually existing on actual circuit.
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The phase-inversion waves penetrate each other by above mechanism.
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C �4.7[nF],L �100[mH] and L0 �50[µ H]).

Figure 7: Computer simulation result of N=6.
(α= 0.05 and ε=0.15.)
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