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Abstract—For designing oscillatory circuit, it is important to
simulate and search the characteristics. If we analyze a weakly
nonlinear circuit, we often apply averaging method which is one
of the approximate solving method. In this study, we combine the
averaging method to Newton homotopy method and analyze a
circuit by using Spice. By solving Newton homotopy method, we
obtain multiple equilibrium points in a single Spice simulation.
As an example, we analyze the property of two coupled van der
Pol oscillators. By using our proposed Spice-oriented algorithm,
we obtain three equilibrium points. The result shows us, our
proposed method is convenient for search the equilibrium points
in averaging method.

I. Introduction

The analysis of synchronization in coupled oscillators is
very important in order to clarify mechanisms of the genera-
tions of various phenomena in natural systems. For example,
blinking of the firefly, the moving rhythmically of heart cell,
and laser oscillation and so on. In the field of electrical
engineering, a lot of studies on synchronization phenomena
of coupled van der Pol oscillators have been carried out up
to now [1]-[3]. When each van der Pol oscillator produces a
nearly sinusoidal wave shape, i.e., nonlinearity of the network
is small, equilibrium points can be solved by some applying
approximate methods such as averaging method [4], perturba-
tion method, asymptotic method and so on. In generally, aver-
aging method is widely used for analysis of weakly nonlinear
systems in stable state. As particularly nice examples, Endo et
al. have presented the details of a theoretical analysis by using
averaging method and corresponding circuit experiments on
coupled van der Pol oscillators arranged in a ladder, a ring
and in a two-dimensional array topologies [5]-[7]. However,
the number of variables and equilibrium points will be too
large, by increasing the number of coupled oscillators. In this
case, it is not easy to find all of equilibrium points.

In this study, we propose a convenient algorithm of averag-
ing method combined with Newton homotopy method by using
Spice (is application for circuit simulation, and many Spice-
oriented algorithms are proposed by authors [8]-[10]). Usually,
the circuit equation applied averaging method is including
fixed integration. We approximate the fixed integration to
trapezoidal formula in order to realize determining equation
to dc circuit model. Newton homotopy method shows global
convergent compared with Newton method, and we can obtain
multiple equilibrium points. This method is realized in easily

by using solution-curve tracing circuit (STC) in Spice [8]-
[10]. By combining averaging method and Newton homotopy
method, we obtain multiple equilibrium points with a single
Spice simulation in parallel.

Section II describes averaging method. Section III explains
Spice-oriented Newton homotopy method and STC. Illustrated
examples of the proposed algorithm for the averaging method
is shown in Sec. IV and Sec. V concludes the article.

II. Averaging method

Averaging method is used for solving the weakly nonlinear
circuit systems. All of oscillatory circuits can be expressed by
second order differential equation as Eq. (1).

ẍ + x = ε f (t, x, ẋ). (1)

f (t, x, ẋ) is a nonlinear function and ε satisfies 0 < ε ≪ 1 in
Eq. (1). Equation (1) is given by{

ẋ = y
ẏ = ε f (t, x, ẋ) − x . (2)

If the nonlinearity of the circuit system is set to ε = 0 (this is
because ε denotes the tiny constant), Eq. (2) can be described
as Eq. (3). {

ẋ = y
ẏ = −x . (3)

Equation (3) satisfies{
x = ρ(t) sin(t + θ(t))
y = ρ(t) cos(t + θ(t)) . (4)

In Eq. (4), ρ(t) and θ(t) are obtained by initial condition. From
this reason, if ε is very small, we can express Eq. (2) as

ρ̇(t) sin(t + θ(t)) + ρ(t)(1 + θ̇(t)) cos(t + θ(t))
= ρ(t) cos(t + θ(t))
ρ̇(t) cos(t + θ(t)) − ρ(t)(1 + θ̇(t)) sin(t + θ(t))
= ε f (t, ρ(t) sin(t + θ(t)), ρ(t) cos(t + θ(t)))
−ρ(t) cos(t + θ(t))

.

Namely,
ρ̇(t) = ε f (t, ρ(t) sin(t + θ(t)), ρ(t) cos(t + θ(t)))
· cos(t + θ(t))

θ̇(t) = −ε
ρ

f (t, ρ(t) sin(t + θ(t)), ρ(t) cos(t + θ(t)))

· sin(t + θ(t))

. (5)
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In the averaging method, we can treat ρ(t) and θ(t) to fixed
numbers of ρ and θ. We can approximate ρ(t) and θ(t) to
average of t = 0 from 2π. We obtain
ρ̇(t) =

ε

2π

∫ 2π

0
f (ϕ − θ, ρ sin ϕ, ρ cos ϕ) · cos ϕdϕ

θ̇(t) = − ε
2πρ

∫ 2π

0
f (ϕ − θ, ρ sin ϕ, ρ cos ϕ) · sin ϕdϕ

ϕ ≡ t + θ

. (6)

If the steady state, ρ̇(t) = 0 and θ̇(t) = 0 must be satisfied.
From Eq. (6), we obtain a stable amplitude.

In our algorithm, we apply trapezoidal formula into integra-
tion in Eq. (6). Namely,

ρ̇(t) =
ε

2π

∫ 2π

0
f (ϕ − θ, ρ sin ϕ, ρ cos ϕ) · cos ϕdϕ

=
ε

2π
( f (θ, ρ, ϕ0) + f (θ, ρ, ϕK))

+
ε

2π
( f (θ, ρ, ϕ1) cos ϕ1 + f (θ, ρ, ϕ2) cos ϕ2

+ . . . + f (θ, ρ, ϕK−1) cos ϕK−1)
(7)

θ̇(t) = − ε
2πρ

∫ 2π

0
f (ϕ − θ, ρ sin ϕ, ρ cos ϕ) · sin ϕdϕ

= − ε
2πρ

( f (θ, ρ, ϕ0) + f (θ, ρ, ϕK))

− ε
2πρ

( f (θ, ρ, ϕ1) sin ϕ1 + f (θ, ρ, ϕ2) sin ϕ2

+ . . . + f (θ, ρ, ϕK−1) sin ϕK−1),
(8)

where

ϕ0 = 0, ϕ1 =
1
K
· 2π, ϕ2 =

2
K
· 2π,

. . . , ϕK−1 =
K − 1

K
· 2π, ϕK = 2π. (9)

By exchanging Eq. (6) to Eqs. (7) and (8), we can express
these equations by the dc circuits. f (θ, ρ, ϕK) is realized by
analog behavior models (ABMs) in Spice. ABM is the Spice-
oriented function for realize an equation in Spice.

III. Spice-oriented Newton homotopy method

Newton homotopy method is one of method for finding
multiple dc solutions. The circuit model of Newton homotopy
method is shown in Fig. 1. We assume equations as follows;

g0(V0,V1,V2, . . . ,VM) = 0
g1(V0,V1,V2, . . . ,VM) = 0
g2(V0,V1,V2, . . . ,VM) = 0
. . . . . . . . . . . . . . . . . .
gM−1(V0,V1,V2, . . . ,VM) = 0
gM(V0,V1,V2, . . . ,VM) = 0

. (10)

These determining equations are described by a set of al-
gebraic equations, which consists of M-equations and same

Fig. 1. Circuit model of Newton homotopy method.

Fig. 2. Solution-curve tracing circuit (STC).

number of variables. However, it is not easy to solve the
equations, because they may have the multiple solutions.

Applying the Newton homotopy method to solve Eq. (10),
we obtain the following relation;

G(V, τ) = g(V) − (1 − τ)g(V(0)) = 0. (11)

where the initial state is set by a point (V(0), τ = 0) and gets
the solutions satisfying g(v) = 0 at τ = 1 on the path. τ shows
solutions curves called homotopy paths, and find the multiple
solutions lying on the paths. A solution curve is traced by
ark-length method as follows;

G(V, τ) = 0
M∑(

dvi

ds

)2

+

(
dτ
ds

)2

= 1

i = 1
i , 2

. (12)

Equation (12) is realized by circuit model. Figure 2 shows the
circuit diagram of solution-curve tracing circuit (STC).

IV. Illustrative example

A. Simulation circuit

As an illustrative example, we consider multi coupled
oscillators as shown in Fig. 3. In this circuit model, two van
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Fig. 3. Two van der Pol oscillators coupled by a inductor.

der Pol oscillators are coupled by a inductor. We can express
the determining equation of a and b in Fig. 3 as follows;

1
La

∫
vadt +Ca

dva

dt
+ ira =

1
L0

∫
(va − vb)dt

1
Lb

∫
vbdt +Cb

dvb

dt
+ irb =

1
L0

∫
(vb − va)dt

ira = −αva + βva
3

irb = −αvb + βvb
3

. (13)

We differentiate and arrange to Eq. (13).

d2va

dt2 −
α

Ca

(
1 − 3β
α

va
2
)

dva

dt

+

(
1

CaLa
− 1

CaL0

)
va +

1
CaL0

vb = 0

d2vb

dt2 −
α

Cb

(
1 − 3β
α

vb
2
)

dvb

dt

+

(
1

CbLb
− 1

CbL0

)
vb +

1
CbL0

va = 0

. (14)

We convert (vi, t) into
vi =

√
α

3β
xi, i = a, b

t =
t′√

1
CiLi

− 1
CiL0

. (15)

We obtain the normalized equations as follows;

ẍa − εa(1 − x2
a)ẋa + xa − γaxb = 0

ẍb − εb(1 − x2
b)ẋb + xb − γbxa = 0

εi =
α√

1
CiLi

− 1
CiL0

, γi =
Li

L0 − Li

i = a, b

. (16)

In this study, we consider that two identical van der Pol
oscillators are coupled. Namely, γa = γb = γ and εa = εb = ε.
We can express Eq. (16) as vector differential equation;

ẍ + Bx = εẋ − 1
3
εẋc, (17)

where

x = [xa, xb]T , xc = [xa
3, xb

3]T , B =
[

1 −γ
−γ 1

]
. (18)

We transform Eq. (18) to homogeneous as follows; ÿ + P−1BPy = εẏ − 1
3

P−1εẋc

x = Py
. (19)

In Eq. (19), eigenvalues of B are λ1 = 1 − γ, λ2 = 1 + γ.
Although we can diagonalize P−1BP by treating eigenvector
of λ1 is p1 = [1/

√
2, 1/

√
2]T and λ2 is p2 = [1/

√
2,−1/

√
2]T .

Namely,

P−1BP = PT BP =
[
λ1 0
0 λ2

]
. (20)

From this reason, we can express Eq. (19) as{
ÿa − ωa

2ya = ε f1(ya, yb, ẏa, ẏb)
ÿb − ωb

2yb = ε f2(ya, yb, ẏa, ẏb)
, (21)

where 

ωa
2 = λa, ωb

2 = λb

f1(ya, yb, ẏa, ẏb) = ẏa −
1
3

g1(ya, yb, ẏa, ẏb)

f2(ya, yb, ẏa, ẏb) = ẏb −
1
3

g2(ya, yb, ẏa, ẏb)

. (22)

In Eq. (22), g1 and g2 are given by[
g1
g2

]T

= P−1 ẋc =
d(PT xc)

dt

=
d
dt


1
√

2

1
√

2
1
√

2
− 1
√

2




(
1
√

2
ya +

1
√

2
yb

)3

(
1
√

2
ya −

1
√

2
yb

)3


=


3
2

ya
2ẏa +

3
2

ẏayb
2 + 3yaybẏb

3
2

yb
2ẏb +

3
2

ẏbya
2 + 3ybyaẏa

 .
(23)

Namely,

[
f1
f2

]
=


ẏ1 −

1
2

ya
2ẏa −

1
2

ẏayb
2 − yaybẏb

ẏ2 −
1
2

yb
2ẏb −

1
2

ẏbya
2 − ybyaẏa

 . (24)

If ε is very small value (≃ 0), we obtain the relation of ya, ẏa,
yb and ẏb as follows;{

ya = ρa sin(ωat + θa), ẏa = ρaωa cos(ωat + θa)
yb = ρb sin(ωbt + θb), ẏb = ρbωb cos(ωbt + θb) . (25)

Equation (26) are given by applying an averaging method to
Eq. (24).

ρ̇i(t) =
ε

2π

∫ 2π

0

f (ya, yb, ẏa, ẏb) · cos(ωit + θi)
ωi

dϕ

θ̇i(t) =
ε

2π

∫ 2π

0

f (ya, yb, ẏa, ẏb) · sin(ωit + θi)
ωiρi

dϕ

i = a, b

. (26)
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In our proposed algorithm, definite integration in Eq. (26)
are realized by trapezoidal formula. We performed Newton
homotopy method for STC combined with the circuit model
of Eq. (26).

B. Simulation result

Fig. 4. Simulation result (γ = 0.001).

Figure 4 shows a simulation result of γ = 0.001 and ε = 0.1.
We found three equilibrium points. Table I shows a solution
which satisfies τ = 1.

TABLE I
Solutions for γ = 0.001

time[s] ρa ρb
1.7359 2.8977 741.899µ
4.3208 1.4057 1.5719
6.6321 2.6675m 2.8953

TABLE II
Eigenvalue of solutions

time[s] λ1 λ2
1.7359 -17.2000 -8.7900
4.3208 -11.9584 5.7284
6.6321 -17.1001 -8.7699

Table II shows eigenvalue for each equilibrium point, which
is obtained by calculation of MATLAB. Equilibrium points are
asymptotic stability, when real part of λ satisfy < 0. Namely,
we obtain asymptotic stably solutions where time = 1.7359
and 6.6321.

In this study, we set the relation of x and y as

x = Py, P =


1
√

2

1
√

2
1
√

2
− 1
√

2

 . (27)

The stable equations are obtained by Eqs. (25) and (27).

xa = xb ≃ 2.05 sin(ωat + θa) (28)

where ωa =
√

1 − γ = 0.99949987. Equation (28) shows in-
phase solution.

xa = −xb ≃ 2.05 sin(ωbt + θb) (29)

where ωb =
√

1 + γ = 1.00049988. Equation (29) shows anti-
phase solution.

From these results, we confirm that two steady states (in-
phase and anti-phase states) coexist when the nonlinearity of
the network is small.

In this example circuit, we find three equilibrium points in a
transient analysis of Spice. We assume that more equilibrium
points can be find in easily by using our proposed method,
although the number of coupling oscillators becomes large.

V. Conclusion
We proposed Spice-oriented algorithm for averaging method

to analyze the property of the coupled oscillatory systems.
In our algorithm, we combine averaging method to Newton
homotopy method. By introducing Newton homotopy method,
we obtain multiple equilibrium points by the single Spice
simulation. Where definite integration in averaging method
is transformed into trapezoidal formula, and we realized it
into dc circuit. As an example, we analyzed two van der Pol
oscillators coupled by the inductor. By Spice simulation, we
obtained three multiple equilibrium points.

In this study, we realized the circuit by normalized equation
on Spice, and assess the stability with MATLAB. As a future
works, we would like to expand an our proposed algorithm to
perform an averaging method including assessment of stability
by using only Spice.
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