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Abstract

We have proposed the glial network which was inspired from
the feature of glias. The glias are nervous cell existing in the
brain and transmit signal each other like neurons. In the glial
network, the glias connect to the neurons and other glias. The
glias trade information each other by this network.

In this article, we investigate the glial network when only
one glia is stimulated by an external noise. The external noise
propagates the glial network and influences to the Multi-
Layer Perceptron (MLP). By the effect of the one-way in-
fluence via the glial network, a kind of position-depending-
feature appears in the MLP. The simulation results show that
the proposed network possesses better learning performance,
more biased anti-damaging property, and better generaliza-
tion capability than the conventional networks.

1. Introduction

Human’s brain is made by nervous cells which are almost
neurons or glias. In particular, the neurons were investigated
by many researchers. Because the neurons were known that
they make thinking of human by connected to each other. The
Multi-Layer Perceptron (MLP) is one of feed forward neural
networks and is useful to perform several tasks, for example,
pattern recognition, pattern classification, data mining and so
on. Back Propagation (BP) algorithm is a learning algorithm
for the MLP using the steepest decent method [1].

We have proposed the glial networks to improve the per-
formance of MLP. The glial network was inspired from the
feature of the glias which are existing in the brain. The glias
did not attract researchers’ attentions for a long time, because
the glias have been believed not to use electrical signals. Re-
cently, some researchers discovered that the glias transmit
signals by using ions [2]. In the brain, the glias influence each
other and the ions affect neurons’ thresholds [3][4]. We tried
to exploit the glial network’s behavior such that another net-
work located close to the neural network helps the functions

of the neural networks. In [5], we proposed the MLP with the
glial network whose glias generated independent oscillations
and these oscillations propagated neurons and other glias. We
confirmed by computer simulations that the glial network im-
proved the learning performance of the MLP by connecting
the neurons more effectively than the conventional networks.

In this paper, we research a learning result of the MLP
when it is influenced by local stimulus. In the biological sys-
tem, a neural network is not always affected by uniformed
external stimulus. We assume that only one glia is affected
by external stimulus and that this influence propagates in the
glial network. We give random oscillation to one glia and the
MLP learns data having different amplitude oscillations by
the glial network. We confirm that the learning result of MLP
is changed by the biased oscillations.

2. MLP with Glial Network Influenced by Local External
Stimulus

The MLP is the most famous feed forward neural network.
Several methods using the MLP have been proposed for solv-
ing many kinds of tasks. This network has some neuron lay-
ers and the weights between the layers are learned by the BP
algorithm. In this study, we use the MLP with three layers
(2-10-1) and a glial network connected to the hidden layer.
Figure 1 shows an example of the MLP with the glial net-
work.

2.1. Neuron Updating Rule

The standard neuron updating rule is given by Eq. (1).

xi(t + 1) = f

 n∑
j=1

wi j (t)x j(t) − θi(t)

 , (1)

wherex : input or output,w : weight parameter,θ : threshold
and f : output function. The parametersw andθ are learned
by using the BP algorithm.
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Figure 1:MLP with glial network influenced by local external
stimulus.

The updating rule of the hidden layer’s neurons of the pro-
posed neural network with the glial network is modified as
Eq. (2).

xi(t + 1) = f

 n∑
j=1

wi j (t)x j(t) − θi(t) + αΨi(t)

 , (2)

whereΨ : output of the glias,α : weight of glia outputs. We
use the sigmoid function for the outputf as Eq. (3).

f (a) =
1

1+ e−a
. (3)

2.2. Glial Network

In the biological neural network, it is known that the glias
affect to the neighboring neurons over a wide range by mak-
ing their outputs to propagate in the network.

In this study, we assume that the glias do not generate os-
cillations by themselves but only one glia located on an edge
of the network is influenced by a local external stimulus. The
external noise propagates the glial network with decaying.

The output of the glias can be given as Eq. (4).

Ψi(t) = β
i−1ψ(t − i − 1) (i = 1,2,3, · · · 10), (4)

whereψ is the local external stimulus given to the first glia
andβ denotes attenuation parameter. In this study, we input
uniform random noise as external stimulusψ. The noise ef-
fect is propagating the glial network, however, the noise is
attenuated byβ and delayed.

3. Simulation Results

In this section, we show the performance of the proposed
MLP with the glial network by learning chaotic time series.
We use the logistic map to generate chaotic time series. The
logistic map is formulated by Eq. (5).

x(t + 1) = ax(t){1− x(t)}. (5)

We usea = 4.0 which makes the time series as fully de-
veloped chaotic oscillation. We compare the performances
of five different MLPs, which are the conventional MLP, the
MLP with the glial network (α = 0.15, β = 0.9), the MLP
with the glial network (α = 0.2, β = 0.8), the MLP with the
glial network (α = 0.4, β = 0.6) and the MLP with inputted
random noise (noise amplitude is 1.0). We decided the pa-
rameter combinations of the MLP with the glial networks as
the oscillation amplitudes become around 1.0.

Figure 2 is an example of the chaotic time series (100
points) which is obtained by giving a certain initial value to
the logistic map. The BP learning for the MLPs are carried
out by giving two successive points of the chaotic time series
as an input and the following one point as an output. The
learning is repeated for 100 different sets like Fig.3.

Figure 2:Chaotic time series (a = 4.0).
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Figure 3:Learning procedure.

We evaluate three kinds of performances with this task;
learning performance, anti-damaging property and general-
ization capability. We use the following Mean Square Error
(MSE) for evaluate these performances.

MS E=
1
N

N∑
i=1

(ti −Oi)
2. (6)

3.1. Learning Performance

First, we investigate the learning performance of the MLPs
by calculating the time evolution of the errors. The number
of the trials is 200 and the MLPs learn 500000 times during
one trial. We calculate the average of error (Avg. Err.), the
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minimum error (Min.), the maximum error (Max.) and the
standard deviation (St. Dev.).

Table 1 shows the obtained results. We can see that the
conventional MLP is the worst. In this result, the MLP with
random noise performs the best. However, the results of the
MLPs with the glial networks are similar to that of the MLP
with random noise. Further, the maximum error of the MLPs
with the glial networks are larger than that of the MLP with
random noise. We consider that the averaged values of the
MLPs with the glial networks are influenced by a few very
bad results.

Table 1:Learning performance (10−3).
Conv. Glia Glia Glia Noise

– β = 0.9 β = 0.8 β = 0.6 –
Avg. Err. 0.327 0.162 0.194 0.248 0.121

Min. 0.075 0.054 0.054 0.062 0.058
Max. 1.467 1.720 1.564 1.499 0.163

St. Dev. 0.478 0.204 0.304 0.382 0.024

Figure 4 shows an example of the learning curves. The
error of the conventional MLP becomes constant early and is
not improved any more. This is because of the local minimum
problem of the optimizations. The other MLPs seem to be
able to escape out from local minima. We can see that the
MLPs with the glial networks can find good states earlier than
the MLP with random noise in this example.

Figure 4:Learning curve of five MLPs.

3.2. Anti-Damaging Property

Next, in order to investigate the anti-damaging property of
the MLPs, we cut one neuron in the hidden layer after the
learning as shown in Fig.5. This means that the MLPs must
operate by only 9 neurons in their hidden layers. We change
the position of the cut neuron and evaluate the errors.

… …

…

Figure 5:Examples of damaging MLPs.

Figure6 shows the position dependence of the average er-
ror for 200 trials after cutting one neuron. We can say that
a neuron is very important for the corresponding MLP if the
error becomes large after cutting the neuron. On the contrary,
if the performance is similar even cutting the neuron, the neu-
ron is not useful for the MLP. In Fig.6, the horizontal labels
denote the positions of the neurons, hence, the effect of the
external noise is stronger for smaller label of the positions for
the MLPs with the glial networks.
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Figure 6:Performance after damaging one neuron.

From this figure, the MLP with random noise is similar to
the conventional MLP. As we can expect, for the conventional
MLP and the MLP with random noise, every neurons have the
similar importance for the performance. However, we can see
clearly from the figure that the importances of the neurons of
the MLPs with the glial networks are different depending on
their positions.

3.3. Generalization Capability

Finally, in order to evaluate the generalization capabilities
of the MLPs, we give the MLPs unknown time series gener-
ated by the same logistic map after the learning and evalu-
ate the errors between the outputs and the correct following
points. We use ten different time series including 100 points
for the test data. The learning data and one example of the
test data are shown in Fig.7.

The error performance are summarized in Table2. The
performance of the conventional MLP is the worst. The er-
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Figure 7:Learning data and test data.

ror of the MLP with random noise has the smallest standard
deviation. The MLPs with the glial networks has the large
difference between the maximum error and the minimum er-
ror.

Table 2:Generalization capability (10−3)
Conv. Glia Glia Glia Noise

– β = 0.9 β = 0.8 β = 0.6 –
Avg. Err. 0.386 0.353 0.343 0.342 0.355

Min 0.057 0.076 0.083 0.068 0.120
Max 2.131 2.522 2.823 2.845 0.532

St. Dev. 0.550 0.230 0.280 0.418 0.271

Next, we add noise (5%) to the test patterns and investigate
the denoising ability. The results are summarized in Table3.
We can see that the performance of the conventional MLP is
the worst. The MLPs with the random noise has the better
performance than the MLPs with the glial networks.

Table 3:Generalization capability for noisy data (10−3)
Conv. Glia Glia Glia Noise

– β = 0.9 β = 0.8 β = 0.6 –
Avg. Err. 8.748 6.243 6.562 7.7729 6.000

Min 3.635 3.195 3.428 3.316 3.222
Max 58.99 20.97 17.39 42.99 17.84

St. Dev. 4.779 1.340 1.457 3.404 1.254

4. Conclusion

In this article, we have researched the MLP with the glial
network when the glias do not generate any oscillations but
propagate the effect of the external stimulus. By computer
simulations, we confirmed that the proposed MLPs with the

glial networks possessed better learning performance, more
biased anti-damaging property, and better generalization ca-
pability than the conventional networks.

At the moment, we could not maintain that the proposed
MLP performs much better for a certain task than the con-
ventional one in the sense of learning performances, but the
existence of the glial network produces novel features which
have not realized in the conventional artificial neural net-
works; such as individuality of neurons. Real brains must
be, of course, non-uniform and hence we believe that a kind
of individuality will give wider chance to realize more intel-
ligent artificial neural networks.
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