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Abstract—The assessment of the stability for periodic
solutions is very important for designing the circuit. There
are many method for the assessment of the stability. In
this article, we propose a SPICE-oriented method for the
assessment of the stability, that is based on the Floquet the-
ory. By using our method, we can assess the stability of the
circuit easily. First, we obtain the periodic solutions of the
circuit by using the SPICE. Next, we calculate the eigen-
values of a Jacobian matrix by solving variational circuits
based on the Floquet theory. As an example, we assess the
stability of the periodic solutions for one order resonance
circuit including nonlinear capacitors.

1. Introduction

When we simulate the circuit, we often refer to the as-
sessment of the stability. In this paper, we propose a
SPICE-oriented algorithm to the assessment of the stability
for periodic solutions which is based on the Floquet the-
ory [1]. In the conventional method, we have to calculate
the Jacobian matrix for the periodic solutions by solving
the variational equations. In this study, we obtain the Ja-
cobian matrix by the transient analysis of SPICE for vari-
ational circuits which is easily derived from the original
circuit.

Section 2.1 shows how to use the sine-cosine circuits [2],
which is based on the HB (harmonic balance) method. We
use the sine-cosine circuit to obtain the value of the volt-
ages which are required in order to solve variational cir-
cuits. Section 2.2 shows the solution curve-tracing circuit.
It is based on the arc-length method [3][4]. Section 2.3
shows the Floquet theory. Section 3 shows an illustrative
example and how to solve the variational circuits by using
SPICE. Section 4 shows the results and confirms the effec-
tiveness of the proposed method. Section 5 concludes this
article.

2. Frequency analysis and assessment of stability

2.1. Sine-cosine circuit

We introduce the sine-cosine circuit corresponding to the
determining equation of the HB method. If we set the volt-
age through a capacitorC

vC = VCS sinωt + VCC cosωt, (1)

the currentiC is given by

iC = C
dvC

dt
= −ωCVCC sinωt + ωCVCS cosωt. (2)

Thus, the coefficients of sinωt and cosωt are described by

ICS = −ωCVCC, ICC = ωCVCS. (3)

Namely, the capacitor is replaced by coupled voltage-
controlled current sources in the sine-cosine transformation
of the HB method. In the same way, let the current through
an inductorL be

iL = ILS sinωt + ILC cosωt. (4)

Then, the voltagevL is given by

vL = L
diL
dt
= −ωLILC sinωt + ωLILS cosωt. (5)

Thus, the coefficients of sinωt, cosωt are described by

VLS = −ωLILC, VLC = ωLILS. (6)

Namely, the inductor is replaced by coupled current-
controlled voltage sources in the sine-cosine transforma-
tion.

As an example, Fig. 1 shows an RLC ladder circuit and
Fig. 2 shows the corresponding sine-cosine circuits.

Figure 1:RLC ladder circuit

2.2. Solution curve-tracing circuit

Even we use our sine-cosine circuits, we can not obtain
unstable periodic solutions, because we set the frequency
as time in SPICE. In this section, we explain the STC (so-
lution trace circuit) realizing the arc-length method.

First, we can express the ark length in (n+1) dimensional
euclidean space as Eq. (7)

ds=
√

(dx1)2 + (dx2)2 + (dx3)2 + . . . + (dxn+1)2 (7)
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Figure 2:Sine-cosine circuit for Fig.1

In order to trace the solutions curve by SPICE, we replace
the differentiation with respect to the arc-lengths by the
time t. We assumexk as voltages in SPICE. From this, we
can obtain Eq. (8).

p∑
i=1

(
dvi

dt

)2

+

(
dvω
dt

)2

= 1 (8)

In this paper, wherevi (i = 1,2, . . . , p) are the coefficient
of voltages in Eqs. (1) and (4) andvω corresponds toω.
They are realized by using differentiators (simply realized
by capacitors with 1(F) in SPICE). The circuit in Fig. 3
realizes to satisfy the arc-length method Eq. (8). In this

Figure 3:STC (Solution curve-tracing circuit)

circuit, the voltages corresponding to the coefficients are
inputted after differentiated and squared via the voltage-
controlled current source (VCCS). If we set the voltage of
nodea as v̇ω, Iω = v̇2

ω can be obtained by multiplier and
voltage-controlled current source VCCS (MVCCS). Then,
the node voltage ˙vω is integrated to obtainvω. Note thatR
in Fig. 3 is a very large resistance used only to avoid the
L − J cut-set.

2.3. Stability of periodic solutions

We suppose that there is a circuit equation as

f (ẋ, x, y, ωt) = 0, (9)

and make the variational equation for the regular period
solution of x̂. First, we assume the small change quantity
as (∆x,∆y) as {

x = x̂+ ∆x
y = ŷ+ ∆y

(10)

and substitute Eq. (10) to Eq. (9). We obtain the equation
as

f ( ˙̂x, x̂, ŷ, ωt) +

[
∂ f
∂ẋ
∂ f
∂x
∂ f
∂y

]
|x=x̂,y=ŷ

 ∆̇x
∆x
∆y

 = 0. (11)

In Eq. (11), the first term is regular period solution and
second term is variational equation. We change the second
term as

∆̇x = A(t)∆x. (12)

In Eq. (12),A(t) is the periodic function. We apply the
Floquet theory for this periodic function. We write the Ja-
cobian matrix of the periodic solution asΦ(t). From this,
the solution after one period from initial value of∆x(0) is
given as follows;

∆x(T) = Φ(T)∆x(0). (13)

Hence, when the eigenvalues (λ1, λ2, . . . , λn) of Φ(T) sat-
isfy |λk| < 1 (k = 1, 2, . . . ,n), the regular periodic solution
x̂ is stable.

3. Illustrative example

Figure 4:Example model

Figure 4 shows a circuit for an illustrative example. The
nonlinear characteristics can be solved by using the SPICE
model in Fig. 5.

We can express the circuit equations as follows;
e(t) = Ri+ L

di
dt
+ αq+ βq3

dq
dt
= i

(14)

If we write the variables as periodic solutions with small
variations: {

i = i0 + ∆i
q = q0 + ∆q,

(15)

we obtain the following variational equations.
e(t) = R∆i + L

d∆i
dt
+ (α + β3q0

2)∆q

d∆q
dt
= ∆i

(16)
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Figure 5:SPICE model for Fig.4

Figure 6:Variational circuit for Fig. 5

where we neglect higher-order small terms.
From these equations, we can make the variational cir-

cuit for Fig. 5. In Fig. 6,q0 is the steady solutions given
as

q0 = Qc cosωt + Qs sinωt. (17)

We analyze this circuit and calculate the values of two
variables after one period from two different initial condi-
tions; (∆i0,∆q0) = (1,0) or (∆i0,∆q0) = (0,1). We obtain
4 variational values forΦ(T).

Φ =

[
∆i(∆i0,∆q0)=(1,0) ∆q(∆i0,∆q0)=(1,0)

∆i(∆i0,∆q0)=(0,1) ∆q(∆i0,∆q0)=(0,1)

]
We calculate the eigenvalues ofΦ(T) by using MATLAB
and assess the stability of the periodic solutions.

4. Simulation results

Figures 7 and 8 show the simulation results of the fre-
quency response ofi and q, respectively, which are ob-
tained by the sine-cosine circuits and the STC with SPICE.

We set the parameters as follows;Em = 0.35[V], α =
1.0, β = 0.8, R = 0.05[Ω], L = 0.1[H]. In this sec-
tion, we compare and check the our results with the re-
sults which obtained by transient analysis of Fig. 4. We

Figure 7:Frequency response ofi

Figure 8:Frequency response ofq

analyze the caseω = 4.78[rad/s], ω = 4.51[rad/s] and
ω = 4.26[rad/s].

For the validation, we simulate the original circuit. The
simulation results of transient analysis (Fig. 9, Fig. 10 and
Fig. 11), indicate thatω = 4.78[rad/s] is stable, and that
ω = 4.51[rad/s] andω = 4.26[rad/s] are unstable.

Next, we show the results which obtained by our
method. First, we show the solutions for the case of
ω = 4.78[rad/s].

Φ =

[
0.599 0.012
−13.897 0.593

]
Second, we show the solutions for the case ofω =

4.51[rad/s].

Φ =

[
0.0447 0.149
−2.831 1.707

]
Lastly, we show the solutions for the case ofω =

4.26[rad/s].

Φ =

[
0.4001 0.1209
0.7348 1.412

]
Table 1 shows the calculated eigenvalues ofΦ for the

twoω.
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Figure 9:Transient analysis ofω = 4.78[rad/s]

Figure 10:Transient analysis ofω = 4.51[rad/s]

We can see thatω = 4.78[rad/s] is stable, because all of
eigenvalues satisfy|λ| < 1. However, for the other patterns,
the solutions are unstable, because one of the two eigenval-
ues does not satisfy|λ| < 1.

Namely, we can say that our method gives the same re-
sults as the results obtained by transient analysis with sim-
pler SPICE-oriented algorithm.

5. Conclusion

We proposed a SPICE-oriented algorithm to assess the
stability of periodic solutions for nonlinear circuits. We ob-
tained periodic solutions by using SPICE and we assessed
the stability based on the Floquet theory. In detail, we ana-
lyzed the second order resonance circuit with nonlinear ca-

Table 1: Eigenvalues ofΦ

ω [rad/s] |λ1| |λ2|
ω = 4.78 0.5963+0.4093i 0.5963-0.4093i
ω = 4.51 0.358 1.3936
ω = 4.26 0.319 1.4928

Figure 11:Transient analysis ofω = 4.26[rad/s]

pacitors for three different conditions ofωwhich gives both
stable and unstable solutions. Our results agree well with
the previously obtained results. We would like to improve
the proposed method more effectively for the analysis of
larger scale circuit.
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