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Abstract—We analyze synchronization phenomena on
coupled oscillators systems as a ladder and a lattice. On the
systems, we observed phase-inversion waves, which are phe-
nomena of changing phase states between two adjacent oscil-
lators from in-phase synchronization to anti-phase synchro-
nization or from anti-phase synchronization to in-phase syn-
chronization in steady state. Some characteristics of phase-
inversion waves are propagations, penetrations, reflections,
and disappearances. In this paper, we discover the phase-
inversion waves in in-and-anti-phase synchronization. We
clarify regions which the phase-inversion wave can be ob-
served in in-and-anti-phase synchronization, and clarify a
mechanism of propagation of a phase-inversion wave in in-
and-anti-phase synchronization on the lattice system.

1. Introduction
A lot of synchronization phenomena can be observed in

nature world. For example, there are biological clocks,
schools of sardines, the synchronization of fireflies, and so
on. Recently, synchronization phenomena are researched in
various fields[1]-[2].

In our previous study, we observed synchronization phe-
nomena on coupled oscillators system. This system is made
by using van der Pol oscillators which are coupled by in-
ductor as a lattice[3]. We predicted the time-series data by
using this system including nine oscillators[4]. We observed
phase-inversion waves on this system including over 25 os-
cillators. We analyzed a mechanism of disappearance be-
tween two phase-inversion waves. Further, we analyzed a
mechanism of reflection when two phase-inversion waves
arrive at a corner at same time. However, these phase-
inversion waves are observed in double-in-phase synchro-
nization which all oscillators synchronize to in-phase for a
vertical direction and a horizontal direction. In other hand,
on ladder system, the phase-inversion waves are observed
in in-and-anti-phase synchronization[5]. In-and-anti-phase
synchronization is in-phase and anti-phase synchronizations
exist alternately.

In this study, we observe the phase-inversion waves in in-
and-anti-phase synchronization. We clarify regions which
the phase-inversion wave can be observed in in-and-anti-
phase synchronization when N equals 9, and clarify a mech-
anism of propagation of a phase-inversion wave in in-and-
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Figure 1: Circuit model.

anti-phase synchronization using instantaneous frequency of
each oscillator and phase differences between adjacent oscil-
lators on the lattice system.
2. Circuit model

The van der Pol oscillators are coupled by inductors L0 as
a lattice(see Fig. 1). The number of column and row of this
system are assumed as “N + 1” respectively. We name each
oscillator OSC(k,l). A voltage of each oscillator is named
v(k,l), and a current of inductor of each oscillator is named
i(k,l)(see Fig. 1). The circuit equations of this circuit model
are normalized by Eq. (1), and the normalized circuit equa-
tions are shown as Eqs. (2)–(6).
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[Corner–top] (left:(a, b)=(0, 1). right:(a, b)=(N,N − 1).)
dx(0,a)

dτ = y(0,a), (2)
dy(0,a)

dτ = −x(0,a) + α(x(0,b) + x(1,a) − 2x(0,a))

+ ε(y(0,a) − 1
3

y3
(0,a)).

[Corner–bottom] (left:(a, b)=(0, 1). right:(a, b)=(N,N − 1).)
dx(N,a)

dτ = y(N,a), (3)
dy(N,a)

dτ = −x(N,a) + α(x(N−1,a) + x(N,b) − 2x(N,a))

+ ε(y(N,a) − 1
3 y3

(N,a)).

[Center] (0 < k < N. 0 < l < N.)
dx(k,l)

dτ = y(k,l), (4)
dy(k,l)

dτ = −x(k,l) + α(x(k+1,l) + x(k−1,l) + x(k,l+1) + x(k,l−1)

− 4x(k,l)) + ε(y(k,l) − 1
3 y3

(k,l)).
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[Edge]
(top:(a, b)=(0, 1).bottom:(a, b)=(N,N − 1).both:0< l <N.)

dx(a,l)

dτ = y(a,l), (5)
dy(a,l)

dτ = −x(a,l) + α(x(a,l−1) + x(a,l+1) + x(b,l) − 3x(a,l))
+ ε(y(a,l) − 1

3 y3
(a,l)).

(left:(a, b)=(0,1). right:(a, b)=(N,N − 1). both:0<k<N.)

dx(k,a)

dτ = y(k,a), (6)
dy(k,a)

dτ = −x(k,a) + α(x(k−1,a) + x(k+1,a) + x(k,b) − 3x(k,a))

+ ε(y(k,a) − 1
3 y3

(k,a)).

The α corresponds to a coupling parameter. The ε corre-
sponds to a nonlinearity of each oscillator. This system
is simulated by the fourth order Runge-Kutta method and
Eqs. (2)-(6). The phase-inversion waves are shown in Fig. 2.
The Fig. 2–A expresses an attractor of each oscillator(current
vs. voltage). The Fig. 2–B expresses itinerancy of phase dif-
ference by which sum of voltages of adjacent oscillators is
shown along the time(sum of voltage vs. time).

3. In-and-anti-phase synchronization
In our circuit, an oscillator, which is not an oscillator

on the edge, has four adjacent oscillators. When phase
states between the oscillator and two of four oscillators are
anti-phase synchronization, phase states between the oscil-
lator and other two oscillators are in-phase synchroniza-
tion. Oscillators on the edges stay in anti-phase synchro-
nization in in-and-anti-phase synchronization. These phase
states are called “in-and-anti-phase synchronization.” The
phase-inversion waves in in-and-anti-phase synchronization
are classified into two patterns. Pattern A can be observed if
N is an odd number. Odd number’s phase-inversion waves
propagate in vertical direction and horizontal direction re-
spectively. Pattern B can be observed if N is an even number.
Even number’s phase-inversion waves propagate in vertical
direction and horizontal direction respectively. Simulation
results of pattern A and B show in Figs. 2 and 3 respectively.
Figure 4 shows regions which the phase-inversion wave can
be observed in in-and-anti-phase synchronization when N
equals 9. The coupling parameter α and nonlinearity ε are
changed from 0.050 to 1.0, every 0.050. The phase-inversion
wave in in-and-anti-phase synchronization can be observed
in region(i)(see Figs. 2 and 4). The complex phenomena on
in-and-anti-phase synchronization can be observed in region
(ii)(see Figs. 4 and 5).

We can observe some characteristics of phase-inversion
waves in in-and-anti-phase synchronization. These char-
acteristics are a propagation, a penetration, a reflection
at an edge, and a reflection between two phase-inversion
waves(see Figs. 2 and 3). These characteristics are shown
in Table 1.

4. Mechanism
We analyze a mechanism of propagation of a phase-

inversion wave. The mechanism is made clear by using in-
stantaneous frequency of each oscillator and phase differ-
ences between adjacent oscillators. Figure 6 shows the signs
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Figure 2: Pattern A - Phase-inversion waves on 9x9
oscillators(α=0.05 and ε=0.15).
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Figure 3: Pattern B - Phase-inversion waves on 10x10
oscillators(α=0.05 and ε=0.15).

of the initial values of the voltages and currents of each os-
cillator. The coupling parameter α is fixed as 0.05, and non-
linearity ε is fixed as 0.15. An equation of the instantaneous
frequency of OSC(k, l) is obtained as follows(see Eq. (7)).
The instantaneous frequency is named f(k,l)(a) where “a” ex-
presses the number of times of the peak value of the volt-
age. Time of a-th peak value of the voltage of OSC(k, l)
is assumed as τ(k,l)(a)(see Fig. 7). Similarly, τ(k+1,l)(a) and
τ(k,l+1)(a) are decided.

f(k,l)(a) =
1

τ(k,l)(a) − τ(k,l)(a − 1)
. (7)

Three frequencies are observed in this system. To consider
of the synchronizations for the vertical direction and for the
horizontal direction are needed, because this system is 2 di-
mensional array. The in-phase synchronization and the anti-
phase synchronization exist. Therefore, three types of syn-
chronizations are observed as follows:

1. OSC(k, l)–OSC(k, l + 1), OSC(k, l)–OSC(k, l − 1),
OSC(k, l)–OSC(k + 1, l), and OSC(k, l)–OSC(k − 1,
l): the in-phase synchronization.

2. {(OSC(k, l)–OSC(k, l− 1), and OSC(k, l)–OSC(k, l+ 1)
are a same phase synchronization state, and OSC(k, l)–
OSC(k − 1, l), and OSC(k, l)–OSC(k + 1, l) are another
phase synchronization state.} or {OSC(k, l)–OSC(k − 1,

α

ε

(ii)

 1 0.05
 0.05

 1

Figure 4: Region of in-and-anti-phase synchronization on
9x9 oscillators
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Table 1: Characteristics of the phase-inversion waves on in-and-anti-phase synchronization.

Names of characteristics Phenomena

Propagations
The phase-inversion waves propagate for vertical direction or horizontal direction. The vertical phase-inversion
waves independently move from the horizontal phase-inversion waves.

Penetrations
Two phase-inversion waves arrive at an oscillator from vertical direction and horizontal direction, and each phase-
inversion wave penetrates each other.

Reflections at an edge
When a phase-inversion wave arrives at an edge, the phase-inversion wave reflects and propagates to where they
came from. Sometime this phenomenon is happened with penetration.

Reflections between two
phase-inversion waves

When two phase-inversion waves coming from the opposite directions arrive to two adjacent oscillator at same time,
the phase-inversion waves reflect and propagate to where they came from.

Figure 5: An example of complex phenomena in
region(ii)(α=0.05 and ε=0.85).
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Figure 6: Sign of initial value of each oscillator of in-and-
anti-phase synchronization.

l), and OSC(k, l)–OSC(k, l − 1): are a same phase syn-
chronization state, and OSC(k, l)–OSC(k + 1, l), and
OSC(k, l)–OSC(k, l + 1): are another phase synchro-
nization state.} or {OSC(k, l)–OSC(k−1, l), and OSC(k,
l)–OSC(k, l+1): are a same phase synchronization state,
and OSC(k, l)–OSC(k, l−1), and OSC(k, l)–OSC(k+1,
l): are another phase synchronization state.}

3. OSC(k, l)–OSC(k, l + 1), OSC(k, l)–OSC(k, l − 1),
OSC(k, l)–OSC(k + 1, l), and OSC(k, l)–OSC(k + 1,
l): the anti-phase synchronization.

An instantaneous frequency f(k,l) of OSC(k, l) is obtained in
each synchronization-type. The 1st situational synchroniza-
tion frequency is called fin−in. The 2nd situational synchro-
nization frequency is called fin−anti. The 3rd situational syn-
chronization frequency is called fanti−anti. The phase differ-
ence is calculated as follows. A phase difference between
OSC(k, l) and OSC(k + 1, l) and a phase difference between
OSC(k, l) and OSC(k, l + 1) are obtained. The phase differ-
ences are assumed as Φ(k,l)(k+1,l)(a) and Φ(k,l)(k,l+1)(a) respec-
tively. The Φ(k,l)(k+1,l)(a) and Φ(k,l)(k,l+1)(a) are obtained by
Eq. (8)(see Fig. 7).

Φ(k,l)(k+1,l)(a) =
τ(k,l)(a) − τ(k+1,l)(a)
τ(k,l)(a) − τ(k,l)(a − 1)

× 360 [degree]

Φ(k,l)(k,l+1)(a) =
τ(k,l)(a) − τ(k,l+1)(a)
τ(k,l)(a) − τ(k,l)(a − 1)

× 360 [degree].
(8)

4.1. Propagation mechanism
We can observe a phenomenon that a phase-inversion

wave to a vertical direction in each column propagate in in-
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V τ(k+1, l)(a)
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Figure 7: The detection method of frequencies and the phase
differences.
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Figure 8: Transitions of phase difference and frequencies by
propagation of a phase-inversion wave on in-and-anti-phase
synchronization.
and-anti-phase synchronization. We fix the N as 19. Propa-
gation mechanism is shown in Table. 2(see Fig. 8). In Fig.
8(a), the vertical axis is instantaneous frequency, and hori-
zontal axis is time. In Fig. 8(b), the vertical axis is the phase
difference, and the horizontal axis is time.

4.2. Comparison between a propagation in double in-
phase synchronization and a propagation in in-and-
anti-phase synchronization.

The frequency’s itinerancies of propagation of the phase-
inversion wave in double in-phase synchronization are Fig.
9. The frequencies are changed from fin−in to fanti−anti.

5. Conclusion
We discovered the phase-inversion waves in in-and-anti-

phase synchronization. We clarified regions which the phase-
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Table 2: Propagation mechanism of a phase-inversion wave(see Fig. 8).
no. Mechanism

0 At this time, Φ(9,3)(9,4) and Φ(8,3)(8,4) are fixed the in-phase synchronization. Φ(9,2)(9,3) and Φ(8,2)(8,3) are fixed the anti-phase synchronization.
In vertical direction, the phase-inversion wave, which changes synchronized state, arrives at the number of row is 10 from the number of row is
18.

1 A phase difference Φ(9,3)(10,3) starts to change from the in-phase synchronization toward the anti-phase synchronization by a phase-inversion
wave.

2 A instantaneous frequency f(9,3) starts to increase from fin−anti toward fanti−anti, because Φ(9,3)(10,3) starts to change from the in-phase synchro-
nization toward the anti-phase synchronization and Φ(9,2)(9,3) and Φ(8,3)(9,3) are anti-phase synchronization and Φ(9,3)(9,4) is in-phase synchro-
nization.

3 Φ(8,3)(9,3) starts to change from the anti-phase synchronization toward the in-phase synchronization by f(9,3).

4 f(8,3) starts to decrease from fin−anti toward fin−in, because Φ(8,3)(9,3) starts to change from the anti-phase synchronization toward the in-phase
synchronization and Φ(8,3)(8,4) and Φ(7,3)(8,3) are the in-phase synchronization and Φ(8,2)(8,3) is the anti-phase synchronization.

5 f(9,3) doesn’t arrive at fanti−anti and f(9,3) starts to decrease toward fin−anti again, because Φ(9,3)(10,3) starts to change from the in-phase syn-
chronization toward the anti-phase synchronization and Φ(8,3)(9,3) starts to change from the anti-phase synchronization toward the in-phase
synchronization and Φ(9,3)(9,4) is the in-phase synchronization and Φ(9,2)(9,3) is the anti-phase synchronization.

6 Φ(7,3)(8,3) starts to change from the in-phase synchronization toward the anti-phase synchronization by f(8,3).

7 Φ(9,3)(10,3) arrives at the anti-phase synchronization and becomes fix.

8 f(8,3) doesn’t arrive at fin−in and f(8,3) starts to increase toward fin−anti again, becauseΦ(8,3)(9,3) starts to change from the anti-phase synchroniza-
tion toward the in-phase synchronization andΦ(7,3)(8,3) starts to change from the in-phase synchronization toward the anti-phase synchronization
and Φ(8,3)(8,4)is the in-phase synchronization and Φ(8,2)(8,3) is the anti-phase synchronization.

9 f(9,3) arrives at fin−anti again, because Φ(9,3)(10,3) arrives at the anti-phase synchronization and Φ(8,3)(9,3) starts to change from the anti-phase
synchronization toward the in-phase synchronization and Φ(9,3)(9,4) is the in-phase synchronization and Φ(9,2)(9,3) is the anti-phase synchroniza-
tion.

10 Φ(8,3)(9,3) arrives at in-phase synchronization and becomes fix, because f(9,3) arrives at fin−anti and becomes fix.

11 f(8,3) arrives at fin−anti again, becauseΦ(8,3)(9,3) arrives at the in-phase synchronization and Φ(7,3)(8,3) starts to change from the in-phase synchro-
nization toward the anti-phase synchronization and Φ(8,3)(8,4) is the in-phase synchronization and Φ(8,2)(8,3) is the anti-phase synchronization.

12 Φ(7,3)(8,3) arrives at anti-phase synchronization and becomes fix, because f(8,3) arrives at fin−anti and becomes fix.

The phase-inversion wave propagates by this mechanism.

Time[ ]
(a) Instantaneous frequency

Ins
tan

tan
eo

us
 Fr

eq
ue

nc
y

fin-anti

(6,2)

f in-in

fanti-anti

f

(6,1)f

(5,1)f(7,1)f

Horizontal phase-inversion wave
has not arrive yet.

Vertical phase-inversion wave
already past.

Figure 9: Transitions of frequencies by propagation of a
phase-inversion wave on in-and-in-phase synchronization.

inversion wave can be observed in in-and-anti-phase syn-
chronization when N equals 9, and clarified a mechanism of
propagation of a phase-inversion wave in in-and-anti-phase
synchronization by using instantaneous frequency of each
oscillator and phase differences between adjacent oscilla-
tors on the lattice system, and compared between a propa-
gation in double in-phase synchronization and a propagation
in in-and-anti-phase synchronization. The frequencies of
the phase-inversion wave in double in-phase synchronization
are changed from fin−in to fanti−anti. However, the frequen-
cies of the phase-inversion wave in in-and-anti-phase syn-
chronization are changed around fin−anti, and can not change
to fin−in and fanti−anti. We observed some characteristics
of phase-inversion waves on in-and-anti-phase synchroniza-
tion. These characteristics are a propagation, a penetration,

a reflection at an edge, and a reflection between two phase-
inversion waves.
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