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Abstract— This paper considers a novel error-correcting
scheme exploiting chaotic dynamics for noncoherent chaos com-
munication. In our proposed system, two successive chaotic
sequences are generated from the same chaotic map; the second
sequence is generated with an initial value which is the last value
of the first sequence. In this case, successive chaotic sequences
having the same chaotic dynamics are created. This feature
gives the receiver additional information to correctly recover the
information data and thus improves the bit error performance
of the receiver. Further, enhanced efficiency also comes from
operating on successively modulated data; by involving less
redundancy in the error correction system, it can be designed
with high coding rate. In this paper, we analyze the scheme’s
capability, by examining computational times and accuracy rates
of error correction. bounds on its capability.

I. INTRODUCTION

Chaos communication systems are an interesting topic in
the field of engineering chaos [1]– [7]. Especially, many
researchers focused on the development of noncoherent detec-
tion systems which are demodulation techniques using signals
modulated by chaos only or chaotic systems. Differential chaos
shift keying (DCSK) [1] and the optimal receiver [2] are
well-known typical noncoherent systems. Moreover, it is also
important to develop a suboptimal receiver with performance
equivalent to or similar to the optimal receiver using more
efficient algorithms [3] [9].

In our previous research, we focused on the chaotic dy-
namics and proposed the error-correcting method using the
chaotic dynamics [8] [10]. In standard noncoherent chaos
communication systems, a binary data bit is modulated in a
transmitter by a chaotic sequence of chosen length; the bit
is demodulated at the receiver using the modulated sequence
and the transmitted unmodulated corresponding sequence. The
demodulation of each bit is performed only with the chaotic
sequence associated with that bit. We have paid attention to
the successive chaotic sequences which are scarcely used for
the demodulation in standard chaos communications.

In our proposed system, two successive chaotic sequences
are generated from the same chaotic map; the second sequence
is generated with an initial value which is the last value of the
first sequence. In this case, successive chaotic sequences hav-

ing the same chaotic dynamics are created. This feature gives
the receiver additional information to correctly recover the
information data and thus improves the bit error performance
of the receiver. Further, enhanced efficiency also comes from
operating on successively modulated data; by involving less
redundancy in the error correction system, it can be designed
with high coding rate. Preliminary computer simulations have
confirmed that the advantage gained in BER performance is
about 2–3 dB compared to conventional noncoherent systems.
However, the performances of their error-correcting scheme
has been only confirmed in primary simulations. In this paper,
we analyze the scheme’s capability, by examining computa-
tional times and accuracy rates of error correction.

II. SYSTEM OVERVIEW

We consider the discrete-time binary CSK communication
system with the error correcting, as shown in Fig. 1. Detail of
each block is described below.

A. Transmitter
In the transmitter, binary data are encoded by chaotic

sequences generated by a chaotic map. In this study, we use
a skew tent map which is one of simple chaotic maps, and it
is described by Eq. (1)

xi+1 =


2xi + 1 − a

1 + a
(−1 ≤ xi ≤ a)

−2xi + 1 + a

1 − a
(a < xi ≤ 1)

(1)

where a denotes a position of the top of the skew tent map. Our
encoder is designed based on Chaos Shift Keying (CSK) which
is a digital modulation system using chaos. Figure 2 shows our
encoder for our error-correcting scheme. To perform the error
correction at the receiver, K information bit are transmitted as
K signal blocks (0, 1, · · · , j, · · · ,K − 1). The encoder selects
a chaotic signal generator according to the symbol. If the
symbol “1” is sent, Eq. (1) is used, and if “0” is sent, the
reversed function of Eq. (1) is used. Thus, the signal vector
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Fig. 1. Block Diagram of Discrete-Time Binary CSK Communication
System.
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Fig. 2. Encoder based on CSK for error correction.

Sj is different for each symbol.
[When the symbol “1” is sent]

Sj = (xα, f (1)(xα), · · · , f (i)(xα), · · · , f (N−1)(xα)) (2)

[When the symbol “0” is sent]

Sj = (yα, g(1)(yα), · · · , g(i)(yα), · · · , g(N−1)(yα)) (3)

where f (i) and g(i) are the function of the skew tent map for
symbol “1” and “0”, respectively, i is the iteration of f or
g, α = N × j, xj or yj denotes the initial value of the jth
symbol = “1” or “0” respectively, N is the chaotic sequence
length per 1 bit. When K bit data is transmitted, the length
of the data becomes K × N . An initial value is chosen at
random when beginning to make signal blocks and is different
in each chaotic signal generator. In addition, the j-th sequence
is generated from the initial value which is the end value of the
former sequence with same symbol of j-th bit. As an example,
we assume N = 2, K = 4 and the data are (1, 0, 0, 1) shown
in Fig. 2. In this case, the transmitted signal vector S is given
as follows.

S = (S0,S1,S2,S3)
= (x0, x1, y0, y1, y2, y3, x2, x3)
= (s0, s1, s2, s3, s4, s5, s6, s7) (4)

As one can see, the initial value of the 4th symbol and 3rd
symbol is generated by the end value of 1st symbol and 2nd
symbol, respectively.

B. Channel and noise

The channel distorts the signal and corrupts it by noise. In
this study, noise of the channel is assumed to be the additive
white Gaussian noise (AWGN). Thus, the received signals
block is given by R = (r0, r1, · · · , rKN−1) = S+AWGN .

C. Receiver

The receiver recovers the transmitted signals from the re-
ceived signals and demodulates the information symbol. Also,
the receiver performs the error correction in this study. Since
we consider a noncoherent receiver, the receiver memorizes
the chaotic map used for the modulation at the transmitter.

R = (r0, r1, r2, r3, r4, r5, r6, r7)

Detection of symbol 
for each block

Suboptimal Detector

Decoded
data d0 d1 d2 d3=

Output d0 d1 d2 d3=

Analysis of Chaotic
Dynamics

Error Correcting

Ex. N=2, K=4

Fig. 3. Operation of proposed error-correcting method.

P0

=(x0, y0) P1 
= (x1, y1)

P = (X, Y) u

v0

Dm

R’=(rα+i, rα+i+1)
Fig. 4. Calculation of shortest distance.

However, the receiver never knows the initial value of chaos in
the transmitter. Our proposed error-correcting method consists
of the suboptimal detector and the error correction based on
chaotic dynamics, as shown in Fig. 3.

1) Suboptimal detector: First of all, the receiver performs
the noncoherent detection for each received block and demod-
ulates each symbol. In this study, we apply the suboptimal
detection algorithm of Ref. [9] as the noncoherent detection.

Our suboptimal detector calculates the shortest distance
between the received signals and the chaotic map in the
Nd-dimensional space using Nd successive received signals
(Nd : 2, 3, · · ·). As an example, we explain the case of
Nd = 2. In this case, we consider two successive signal
samples R′ = (rα+i, rα+i+1) as coordinate of chaotic map.
To decide which map is closer to the point R′ the shortest
distance between the point and the map has to be calculated.
Therefore, the receiver can calculate the shortest distance using
the scalar product of the vector.

Any two points P0 = (X0, Y0) and P1 = (X1, Y1) are
chosen from each straight line in the Nd-dimensional space,
as shown in Fig. 4. Using Fig. 4, the detector can calculate
the point P = (X,Y ) closest to R and the shortest distance
D using the following equations.

P = (X,Y ) = (u · v0)u + P0 (5)

D = ||P − R′||

=
√

(X − rα+i)
2 + (Y − rα+i+1)

2 (6)

where
unit vector u =

P1 − P0

||P1 − P0||
(7)

v0 = R′ − P0 . (8)
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Fig. 5. Analysis of Chaotic Dynamics using Suboptimal Detection.

In the case of 2-dimensional space, there are two straight
lines in the space. Therefore, the minimum value in four
distances is chosen as the shortest distance D1 for symbol
“1”. In the same way, D of symbol “0” is chosen as D0. We
perform these operations until the last sample (i.e., rα+N−1) is
included, and find their summations

∑
D1 and

∑
D0. Finally,

we decide the decoded symbol as 1 (or 0) for
∑

D1 <
∑

D0

(or
∑

D1 >
∑

D0). The calculation of the shortest distance
can be extended to Nd-dimensional space for Nd ≥ 4.

2) Error-correcting method without Redundancy code:
After demodulation of each symbol, the receiver performs
the error-correcting method. For error correction without the
redundancy code, the receiver uses the received signal samples
again. For ease of explanation, we use Fig. 5 and explain an
operation of the proposed error-correcting scheme. Here, we
use same assumption in the explanation of the encoder (Fig. 2).
Also, we assume that decoded symbols become (1, 0, 0, 1) and
the detection error has occurred at the 2nd symbol (d2), namely
the case of 1 bit correction.

First of all, the receiver sorts the received signal samples
based on decoded symbols and analyzes the chaotic dynamics
of two sequences which are sorted according to decoded
symbols, as shown in Fig. 5(a). If the receiver can detects sym-
bols and sorts blocks correctly, we can obtain two successive
chaotic sequences based on the chaotic dynamics. However,
if the detection error is occurred when the receiver detects
symbols, the sorted sequence mixes two chaotic sequences
which differ in the chaotic dynamics. We focus on these char-
acteristics of chaos for the error-correcting. For analyzing the
chaotic dynamics, the receiver apply our suboptimal detection
algorithm, i.e., the calculation of the shortest distance between
the chaotic maps and two sorted received sequences. Thus, we
define a reference distance Dbasis as follows.

Dbasis = D1(Sequence of decoded symbol “1”)
+ D0(Sequence of decoded symbol “0”) (9)

where D1(.) and D0(.) mean the shortest distance between

the chaotic map of Symbol “1” and “0”, respectively.
Next, we calculate the distance DR(j) for comparing with

Dbasis, where the subscript R means initial character of
“Reverse”. This equation means the shortest distance between
sorted sequence when the j-th decoded symbol is reversed and
the chaotic map corresponding to their sequences. Namely,
we assume the detection error is occurred at j-th symbol and
calculate DR(j). If the receiver can detects symbols and sorts
blocks correctly, DR(j) becomes lager values as compared
with Dbasis. On the other hands, if the detection error is
occurred, some of DR(0)–DR(K − 1) become smaller as
compared with Dbasis. The reason for changing the values
is also to change combinations of the chaotic dynamics.
Therefore, the receiver selects the smallest distance from
Dbasis and DR(j) and corrects an error.

For instance, Fig. 5(b) shows conceivable combinations of
sorted sequences and calculates DR(j) when the detection
error has occurred at the 2nd symbol. In this case, DR(2)
becomes the smallest distance as compared with Dbasis and
other DR(j). Thus, the receiver can determine that the detec-
tion error is occurred at the 2nd symbol.

Although we consider the case of 1 bit correction in this
assumption, the case of 2 or more bit can be also performed
in the same way. In this case, since the number of the
symbols reversed at once, namely the number of conceivable
combinations increases, a computation time also increases.

III. EVALUATION OF PROPOSED ERROR-CORRECTING
METHOD

In this section, we evaluate the performance of the proposed
error-correcting method. We carry out computer simulations
and investigate three evaluations a bit error rate (BER), an
accuracy rate of each bit correction and a computation time.
The simulation conditions are as follows. In the transmitting
side, we assume K = 32, 64. The parameter of the skew tent
map is fixed as a = 0.05. The chaotic sequence length per
1 bit is N = 4. For calculation of the shortest distance, we
use 4-dimensional space, namely Nd = N = 4. Based on
these conditions, we iterate the simulation 10,000 times and
calculate BER, the accuracy rate and the computation time.

Figures 6(a) and (b) show the BERs versus Eb/N0 for
K = 32 and K = 64, respectively. We plot the performance
of the proposed error-correcting method and the performance
of the conventional method, namely, the performance without
the error-correcting method in Figs. 6(a) and (b). From these
figures, we can confirm that the advantage gained in BER
performance of the proposed error-correcting method is about
1–2 dB compared to conventional method. However, the
performance of 2 bit correction by using the proposed error-
correcting method is only slightly better than that of its 1 bit
correction.

For investigation in detail, we observe the accuracy rate of
each bit error correction in Figs. 7(a) and (b). In this figure, the
left vertical axis is a percentage of the number of each bit error,
the right vertical axis is the accuracy rate of error correction.
In general, it is well-known that the percentage of 1 bit error is
statistically larger than that of 2 bit error as shown in Figs. 7(a)
and (b). Thus, the effect of 1 bit correction by using the
proposed error-correcting method on BER performance is also
larger than that of its 2 bit correction. However, we can observe
that the accuracy rate of its 2 bit correction is better than that
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Fig. 6. BER performance.
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Fig. 7. Accuracy rate of error correction.

TABLE I
COMPUTATION TIME FOR ERROR CORRECTION (104 SYMBOLS).

Computation time [sec]
K = 32 K = 64

w/o coding 1.88 5.15
1bit correction 101.7 434.4
2bit correction 1516.7 12264.2

of its 1 bit correction from these figures. Namely, it can be
said that the 2 bit error correction by using the proposed error-
correcting method is performed at high accuracy rate although
the performance of its 2 bit correction is only slightly better
than that of its 1 bit correction.

Finally, we summarize computation times of the proposed
error-correcting method in Table I. We carry out three sim-
ulations the conventional method (w/o coding), the 1 and 2
bit corrections by using the proposed error-correcting method
with same conditions for calculating BER, and calculate a
computation time required to decode all the symbols with any
fixed Eb/N0. These simulations are carried out using a PC
with a Core2Duo 2.4 GHz CPU and 2 GB of RAM. From this
table, it can be confirmed that the computational time required
the 2 bit correction is largest in the results. Thus, we consider
that it is important to simplify the algorithm of the proposed
error-correcting method and to reduce extra calculation for
improving the computation times.

IV. CONCLUSIONS

In this study, we have analyzed the proposed error-
correction’s capability, by examining the computational time
and the accuracy rate of error correction. As results of com-
puter simulations, it can be said that the 1 bit correction
of the proposed error-correcting method is currently more
accessible than that of its 2 bit correction, although simplifying
the algorithm of the proposed error-correcting method and
reducing its extra calculation for improving the computation
times are our future works.
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[1] G. Kolumbán, B. Vizvári, W. Schwarz, and A. Abel, “Differential chaos
shift keying: A robust coding for chaos communication,” Proc. NDES’96,
pp. 87-92, Jun. 1996.

[2] M. Hasler and T. Schimming, “Chaos communication over noisy chan-
nels,” Int. J. Bifurcation and Chaos, vol. 10, no. 4, pp. 719-736, Apr. 2000.

[3] M. Hasler and T. Schimming, “Optimal and suboptimal chaos receivers,”
Proc. IEEE, vol. 90, Issue 5, pp. 733-746, May 2002.

[4] F. C. M. Lau and C. K. Tse, Chaos-Based Digital Communication
Systems, Springer, 2003.

[5] F. C. M. Lau and C. K. Tse, “On optimal detection of noncoherent chaos-
shift-keying signals in a noisy environment,” Int. J. Bifurcation and Chaos,
Vol. 13, pp. 1587-1597, 2003.

[6] W. M. Tam, F. C. M. Lau and C. K. Tse, “Generalized correlation-delay-
Shift-Keying Scheme for Noncoherent Chaos-Based Communication Sys-
tems,” IEEE Trans. Circuits and Systems Part I, vol. 53, no. 3, pp. 712-
721, Mar. 2006.

[7] L. E. Larson, J-M. Liu, L. S. Tsimring, Digital Communications Using
Chaos and Nonlinear Dynamics, Springer, 2006.

[8] S. Arai, Y. Nishio and T. Yamazato, “Error-Correcting Method Based on
Chaotic Dynamics for Noncoherent Chaos Communications,” ProcProc.
NOLTA’08, pp. 652-655, Sep. 2008.

[9] S. Arai and Y. Nishio, “Suboptimal Receiver Using Shortest Distance Ap-
proximation Method for Chaos Shift Keying,” RISP J. Signal Processing,
vol. 13, no. 2, pp. 161-169, Mar. 2009.

[10] S. Arai, Y. Nishio and T. Yamazato, “No Redundant Error-Correcting
Scheme Using Chaotic Dynamics for Noncoherent Chaos Communica-
tions,” Proc. ISCAS’09, pp. 2633-2636, May 2009.

2461


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index 
	Table of Contents

