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Abstract— Synchronization phenomena in coupled logistic
maps whose parameters are forced into periodic varying are
investigated through the use of Lyapunov exponents. When
three maps are coupled, various synchronization phenomena are
observed by choosing a coupling intensity. The synchroniza-
tion phenomena fall into three general categories, which are
asynchronous, synchronization of two among the three maps
and synchronization of all the maps. In particular, in the
synchronization of two of the three maps, solutions of maps
behave periodic, quasi-periodic and chaotic for several coupling
intensities.

I. INTRODUCTION

Synchronization is one of the fundamental phenomena in
nature, and one of typical nonlinear phenomena. Therefore,
studies on synchronization phenomena of coupled systems are
extensively carried out in various fields, physics [1], biology
[2], engineering and so on. Parametric excitation circuit is one
of resonant circuits, and it is important to investigate various
nonlinear phenomena for future engineering applications. In
a simple oscillator including parametric excitation, Ref. [3]
reports that the almost periodic oscillation occurs if nonlinear
inductor has saturation characteristic. Additionally the occur-
rence of chaos is referred in Refs. [4] and [5]. The network
of chaotic elements can be modeled by a system of coupled
one-dimensional maps. Behavior generated in coupled system
of chaotic one-dimentional map is investigated in Refs. [6]-
[8] In particular, Coupled Map Lattice (CML) and Globally
Coupled Map (GCM) are well known as mathematical models
in discrete-time system. The research into CML and GCM is
important for not only modeling of multiple degree of freedom
nonlinear systems but also application to biological networks
and engineering. In the past we have investigated effects of
parametric excitation of coupled van der Pol oscillators [9].
In this study, for more detailed investigation of the effect
of parametric excitation on synchronization, we focus on a
globally coupled system of simple one-dimensional maps. A
typical scheme for global coupling is given by

xi(t + 1) = (1 − ε)f [xi(t)] + ε
N

N∑
j=1

f [xj(t)]

i = 1, 2, · · ·, N,

(1)

where ε ∈ [0, 1] is the coupling intensity. The globally coupled
maps are a scheme that an average number of all the maps

affect each of the map, and similar to the perfect coupling
system of oscillators that we have studied using van der Pol
oscillators. The one-dimensional map used in this study is a
logistic map, since the map can be described by a simple
discrete equation. Mathematically, the logistic map is written
as

x(t + 1) = αx(t)(1 − x(t)). (2)

In this study, we investigate synchronization phenomena
in the coupled logistic maps whose parameters are forced
into periodic varying. When three maps are coupled, various
synchronization phenomena are observed by choosing a cou-
pling intensity. The synchronization phenomena fall into three
general categories, which are asynchronous, synchronization
of two of the three maps and synchronization of all the
maps. In three state space corresponding to the three coupled
map, the synchronization phenomena are investigated through
spread of solutions, and classified according to behavior of
the solutions. Thus, Lyapunov exponent that calculate the
temporal spreading of the solutions is available for investi-
gate the synchronization. The synchronization is investigated
quantitatively through comparing three-dimensional Lyapunov
exponent with the synchronization.

II. PARAMETRICALLY FORCED LOGISTIC MAP

A parametrically forced logistic map used in this study is
described as:

x(t + 1) = αf (t)x(t)(1 − x(t)), (3)

and

αf (t) =

⎧⎨
⎩

α1, n(τ1 + τ2) < t ≤ n(τ1 + τ2) + τ1

α2, n(τ1 + τ2) + τ1 < t ≤ (n + 1)(τ1 + τ2)
(n = 1, 2, ...)

,

(4)
where αf (t) is a term of the parametric force and time-
varying. The parametric force operation can be described as
follows: in the time interval n(τ1 + τ2) < t ≤ n(τ1 + τ2)+ τ1,
the system is driven by parameter α1 during the duration τ1;
while in the interval n(τ1 + τ2) + τ1 < t ≤ (n + 1)(τ1 + τ2),
the system is driven by parameter α2 during the duration τ2.
In this system, two maps which have two kinds of parameters
are replaced alternately by the number of updates. Then, a
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Fig. 1. One-parameter bifurcation diagram (top) and the Lyapunov exponents
(bottom) for α1 = 3.8 and τ = 1. Horizontal axis: α2.

(a) (b)

Fig. 2. Return maps of parametrically forced logistic maps for τ = 1. (a)
α1 = 3.0 and α2 = 3.83. (b) α1 = 3.8 and α2 = 4.0.

parameter giving a periodic solution and a parameter giving
another periodic solution can be combined. Of course, other
combinations, for instance two parameters giving a periodic
solution and chaotic solution or two parameters giving two
kinds of chaotic solutions, are possible. In this study, we
assume τ1 = τ2 = τ for simplicity.

The one-parameter bifurcation diagrams and the Lyapunov
exponents are obtained as shown in Fig. 1. From the figures,
observations of periodic and chaotic attractors are confirmed.
Figure 2 show some examples of the return maps of the
parametrically forced logistic maps. For the original logistic
map, two-periodic solution is observed for α = 3.0. While,
three-periodic solution is observed for α = 3.83. These two
solutions are periodic, whereas in the logistic map involving
parametric force, a solution is chaotic as shown in Fig. 2(a)

when the parameters α1 and α2 are set 3.0 and 3.83. Namely,
chaotic solution can be observed in the combination of two
parameters that generate two kinds of periodic solutions.

III. SYNCHRONIZATION

Synchronization phenomena generated in the coupled lo-
gistic map involving parametric force are investigated for one
control parameter ε which is coupling intensity when three
maps are coupled and τ = 1. Given that state spases of
the three maps are a three-dimensional phase spase, three-
dimensional Lyapunov exponent is defined because there exist
Lyapunov exponent whose the number of dimension is the
same as the number of dimension of the phase spase. The
three-dimensional Lyapunov exponents obtained at α1 = 3.8,
α2 = 4.0 and τ = 1 are shown in Fig. 3. In Fig. 3, λ1

is maximal Lyapunov exponent. λ2 is a Lyapunov exponent
whose direction is orthogonal to that of the λ1. λ3 is a
Lyapunov exponent whose direction is orthogonal to that of
the λ1 and that of the λ2. Thus, λ1 calculates how complex
trafection of the solution is. λ1 + λ2 calculates planar spread
of the solutions. λ1 + λ2 + λ2 calculates spatial spread of
the solutions. Figure 4 shows attractors in three-dimensional
phase space. Spatial spreads of the solutions are investigated
by using Fig. 3(b). In Fig. 3(b), as increasing ε, for ε > 0.19,
λ1 + λ2 + λ3 becomes negative, whereas λ1 + λ2 is positive.
Namely, the solutions narrow spatially, whereas the solutions
spread planarly. Though, more increasing ε, λ1 +λ2 suddenly
become negative. The solutions narrow planarly. However, for
ε ≥ 0.32, ε > 0.19, λ1 + λ2 + λ3 become positive again.

Figure 5 shows observed synchronization phenomena cor-
responding to Fig. 4. In Fig. 5, upper figures show the return
maps and lower figures show the phase differences between
the maps. For small value of the coupling intensity ε, λ1 is
positive and λ2 and λ3 is almost the same as λ1. All the
maps are chaotic and not synchronized as shown in Fig. 5(a).
For ε ≥ 0.17, λ3 is close to λ2, two of the three maps are
synchronized as shown in Fig. 5(b). In the figure, x1 equal
to x2. Thus, map 1 and map 2 are synchronized. However, in
relation of phase between maps 2 and map 3, concentration
distribution of the phase is not uniform state, and two areas
are high density. Thus, it seem that some kind of relation of
phase exists beteen the unsynchronized maps. For ε > 0.18,
λ3 becomes negative. All chaotic solutions gather in two areas
as shown in Fig. 5(c). In the figures of the phase differences in
Fig. 5(c), the areas where the solutions exist are symmetrical
about the axis of x2(t) = x3(t). That means, if x2 is in an area
around x2 = 0.5, x3 is in an area around x3 = 0.8. While, if
x2 is in the area around x2 = 0.8, x3 is in the area around
x3 = 0.5. For ε > 0.19, λ2 becomes negative. In Fig. 5(d), the
phase difference between maps which are not synchronized
become like circle. For ε > 0.22, λ1 becomes zero. That
means the solutions of all the maps are quasi-periodic. For
ε > 0.24, λ1 becomes negative. That means the solutions of
all the maps are periodic (see Fig. 5(e)). For ε > 0.32, λ1,
λ2 and λ3 becomes positive. All the maps become chaotic
as shown in Fig. 5(f). Additionally, two of the three maps
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(a)

(b)

Fig. 3. Lyapunov exponents in globally coupled parametrically forced logistic
maps for α1 = 3.8, α2 = 4.0 and τ = 1. Horizontal axis: ε. (a)Each of λ.
(b)Sums of λ.

remain in the synchronization. In the figure, the solutions in
all the maps spread over solution space. Though, the shapes
of the return maps are different from that of the uncoupled
map which are introduced in Fig. 2(b). For ε > 0.42, λ2 and
λ3 becomes the same. All the map are synchronized as shown
in Fig. 5(g). In the figure, all the maps are chaotic and have
the same shapes as a map of the uncoupled map.

IV. CONCLUSION

In this study, we investigated synchronization phenomena
in the coupled logistic maps which are forced into periodic
parameter varying. When three maps are coupled, various
synchronization phenomena are observed by choosing the
coupling intensity. The synchronization phenomena fall into
three general categories, which are asynchronous, synchro-
nization of two among the three maps and synchronization
of all the maps. In particular, in the synchronization of two
of the three maps, solutions of maps behave periodic, quasi-
periodic and chaotic for several coupling intensities. Moreover,
the synchronization was investigated quantitatively through
comparing three-dimensional Lyapunov exponent with the
synchronization.

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 4. Attractors in three-dimensional phase space for α1 = 3.8, α2 = 4.0
and τ = 1. (a) ε = 0.100. (b) ε = 0.180. (c) ε = 0.185. (d) ε = 0.205. (e)
ε = 0.300. (f) ε = 0.320. (g) ε = 0.410.
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Fig. 5. Return maps and phase differences for α1 = 3.8, α2 = 4.0 and τ = 1. (a) ε = 0.100. (b) ε = 0.180. (c) ε = 0.185. (d) ε = 0.205. (e) ε = 0.300.
(f) ε = 0.320. (g) ε = 0.410.
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