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Abstract— Some methods using artificial neural network were
proposed for solving to the Two-Spiral Problem (TSP). TSP is a
problem which classifies two spirals drawn on the plane, and it
is famous as the high nonlinear problem.

In this paper, we propose a chaos glial network which
connected to Multi-Layer Perceptron (MLP). The chaos glial
network is inspired by astrocyte which is glial cell in the brain.
By computer simulations for solving TSP, we confirmed that the
proposed chaos glial network connected to MLP gains better
performance than the conventional MLP.

I. INTRODUCTION

Back Propagation (BP) was introduced by Rumelhart in
1986 [1]. BP is used for learning algorithm of MLP and the
error propagates backwards in the network. MLP using BP al-
gorithm is well known to perform for the pattern classification
tasks. However, the solution of the network often falls into the
local minimum, because BP uses the steepest descent method
for the leaning process. Generally, if the solution of MLP falls
into the local minimum, it can not escape. In order to avoid
this problem, some methods to release the solution from the
local minimum are required.

Recently, the mechanism of astrocyte which is glial cell
existing in the central nervous system of the brain has been
attracting. Several research groups discovered that astrocytes
affect to neurons with signal transduction [2]. We consider
that astrocytes make good effects to neurons in the biological
neural networks.

In this study, we propose a chaos glial network which
connects to MLP as shown in Fig. 1. We consider that glial
cells produce chaotic oscillation which is affected to neurons.
This view is motivated by investigations of the Hopfield
network solving combinatorial optimization problems with the
help of a chaotic input signal component, designed in order
to avoid local minima. It appears, from computer simulations,
that a chaotic input component may substantially enhance the
capability of avoiding these local minima [3]-[5]. Hence, we
believe that chaotic signals may be used to further enhance
the efficiency of the proposed chaos glia neural network.

Furthermore, chaotic oscillation generated from glial cells
propagates to the neighbor glial cells. Namely, certain neuron

in this network is affected from some of glial cells located
at a nearby site. We apply the proposed chaos glial network
connected to MLP for solving TSP and confirm the efficiency
by computer simulations.
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Fig. 1. Conceptual chaos glial network.

II. MULTI-LAYER PERCEPTRON

MLP is a most famous feed forward neural network. This
network is used for pattern recognition, pattern classification,
and other tasks. MLP has some layers, it has mainly input
layer, hidden layer, and output layer. Generally, it is known
that MLP can solve a more difficult task if the number of layer
or neuron is increased. We consider MLP which is composed
of four layers (one input layer, two hidden layers and one
output layer), and MLP has the chaos glial network in the
second layer of the hidden layer. The proposed MLP with the
chaos glial network structure (connected 2-20-40-1) is shown
in Fig. 2.

A. Neuron Updating Rule

The updating rule of neurons in the input layer, the first
hidden layer and the output layer is described by Eq. (1) which
is conventional updating rule.

xi(t+ 1) = f

⎛
⎝ n∑
j=1

wij(t)xj(t) − θi(t)

⎞
⎠ , (1)

In the chaos glial neural network, chaotic oscillation is
added to neurons in the second hidden layer. This neuron’s
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Fig. 2. Chaos glial network connected to MLP.

updating rule is following as Eq. (2).

xi(t+ 1) = f

⎛
⎝ n∑
j=1

wij(t)xj(t) − θi(t) + αΨi(t)

⎞
⎠ ,(2)

where x : input or output, w : weight parameter, θ : threshold,
ψ, Ψ : chaotic oscillation, α : amplitude of chaos and f :
output function. And we use sigmoid for the output function
as Eq. (3).

f(a) =
1

1 + e−a
(3)

In the biological neural network, it is known that the
glial cells affect to the neighbor neurons over a wide range
by propagating in the network [7]. In order to realize this
phenomena, we add chaotic oscillation to neurons by using
Eq. (4).

Ψi(t) =
m∑

k=−m
β|k|ψi+k(t− |k|), (4)

where β denotes attenuation parameter and k is the prop-
agating range in the glial network. Chaotic oscillation is
propagating in the glial network as shown in Fig. 3 and it takes
time depending on distance. For example, when the glial cell
is located three units far from certain neuron, effect of chaotic
oscillation arrives to the neuron after three learning steps. And
chaotic oscillation decreases while chaos is propagating in the
network.

B. Back Propagation

The error of MLP propagates backward in the feed forward
neural network. BP algorithm changes value of weights to
obtain smaller error than before. The error of the network is
given by Eq. (5).

E =
1
2

n∑
i=1

(ti −Oi)2, (5)

where E: error value, t: target value and O: neuron output. By
changing the value of weights, MLP’s error becomes smaller.
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Fig. 3. Propagating chaos in the network.

Therefore, partial differential of the weight is carried out by
Eq. (6).

ΔWkj = −η ∂E

∂wkj
(6)

III. CHAOTIC OSCILLATION OF GLIAL NETWORK

We use skew tent map to generate chaos. This map is
one of simple chaotic maps and the center of map is shifted
for a little from the standard tent map. This chaotic map is
defined by Eq. (7) and the diagram of this map is shown in
Fig. 4. Neurons in the second hidden layer are affected chaotic
oscillation by Eq. (7) into the Eq. (4).

ψi(t+ 1) =

{ 2ψ(t)+1−A
1+A (−1 ≤ ψ(t) ≤ A)

−2ψ(t)+1+A
1−A (A < ψ(t) ≤ 1)

, (7)

Here, we consider the case that we prepare two similar initial

Fig. 4. Skew tent map (A=0.05).

values of chaos map for adding two adjacent neurons. Figure 5
shows the two time series obtained from the skew tent map
when initial values are fixed as ψ2(0) = 0.12459 and ψ2(0) =
0.12460. From this figure, the plots of the two time series
are spread and difference between two time series becomes
large with time, even if we use similar initial value to generate
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Fig. 5. Time series of skew tent map.

chaos. This is typical phenomena of chaos known as butterfly
effect. If glial cells add these chaos to neurons, each neuron
is affected with a completely different oscillation.

However, in the real biological neuro-glial network, glial
cells affect each other with neighbor cells. We use the chaos
glia propagating equation (Eq. 4) for having correlation each
other of neighbor glial cells. Figure 6 shows two chaotic time
series by using Eq. (4). The parameters are fixed as β = 0.8,
m = 5. Two chaotic time series have similar peek points. We
consider that these chaotic time series have some correlations.

Fig. 6. Time series of skew tent map with correlation.

IV. SIMULATIONS

In this section, the difference in the performance of our
MLP; chaos glial network connected to MLP and the conven-
tional MLP is compared.

A. Two-Spiral Problem

We apply the proposed network for solving TSP [6]. MLP
learns to each point of two spirals, and MLP learns by using
BP algorithm.

Fig. 7. Two-spiral problem.

B. Simulation Result

Each MLP learns the two spirals by setting up same weights
before learning process. We prepare 98 data of two spirals
as shown in Fig. 7. The number of learning points is fixed
as 500000. We investigate the error which is modified in the
meantime. The error function is defined as Eq. (8).

E =
1
n

n∑
i=1

|ti −Oi|, (8)

where E : error value t : target value, O : output value.

C. Changing the number of neuron adding chaos

We investigate the learning ability when the number of
neuron adding chaos is changed. In this simulation, we add
chaos to the neurons in the second hidden layer’s. We change
the percentage of neuron adding chaos as follows 0%, 20%,
50%, and 100%. The average result for 30 times of simulations
is summarized in Tab. I.

TABLE I

THE PERFORMANCE OF MLP WITH CHAOS GLIAL NETWORK BY

CHANGING THE NUMBER OF NEURON ADDING CHAOS

Points 0% 20% 50% 100%

100000 0.306195 0.334227 0.334600 0.322175

150000 0.228353 0.269349 0.224780 0.244479

200000 0.170263 0.198626 0.177127 0.166893

250000 0.135390 0.153809 0.147403 0.143317

300000 0.120928 0.140445 0.116600 0.115145

350000 0.100454 0.136136 0.111645 0.103821

400000 0.090179 0.120175 0.111659 0.081798

450000 0.088718 0.121040 0.094112 0.086527

500000 0.094303 0.109110 0.086106 0.074204

Minimum 0.018176 0.010911 0.002383 0.002523

From Tab. I, we obtain the best learning ability when all neu-
rons in the second hidden layer are added chaotic oscillation.
In the next simulation, we add chaotic oscillation to every
neurons in the second hidden layer.
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D. Results of Each MLP Learning

We compare the chaos glial network connected to MLP, the
conventional MLP and the random glial network connected
to MLP. In the random glial network, glial network produces
random oscillation. Each result is summarized in Tab. II. This
result shows the average result for 50 times of simulations.

TABLE II

THE PERFORMANCE BY USING EACH MLP

Point Conventional Random Noise Chaotic Noise

100000 0.274507 0.299191 0.299990

150000 0.189218 0.228571 0.247936

200000 0.142849 0.165421 0.197222

250000 0.111989 0.136988 0.152111

300000 0.084422 0.118154 0.120912

350000 0.093832 0.098092 0.097169

400000 0.081747 0.086327 0.080341

450000 0.079630 0.087916 0.074895

500000 0.076502 0.083399 0.067850

Minimum 0.0125310 0.0104630 0.0072510

At start learning, conventional MLP is better than the others.
However, after 400000 learning points the chaos glial network
connected to MLP gains better performance than the con-
ventional MLP. The random glial network connected to MLP
shows the most worst result. If we focus on the minimum error,
the chaos glial network connected to MLP can find smallest
error value. Because similarity of near neurons performs well
by effects of chaos glial cells. And when MLP falls into local
minima, chaos helps to escape with effectively.

Figure 8 is a typical example of learning curve. The
random glial network connected to MLP can not learn to two
spirals. The chaos glial network connected to MLP and the
conventional MLP can learn to it, and the chaos glial network
converges to the lower error value. The learning curve of the
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Fig. 8. The error curve by three MLP networks.

conventional MLP is smooth. While, the others have little
vibration. We consider that this vibration phenomena makes
to escape out from the local minimum.

E. Classification of Two Spirals

In this section, the chaos glial network connected to MLP
classifies the two spirals. The network learns to two spiral
points by propagating chaos method. After learning, we puts
points (0.2 ≤ x ≥ 0.8, 0.2 ≤ y ≥ 0.8) changing little by little
in MLP’s input layer. Figure 9 show the simulation result. In
this case, the error value is around 0.05 at 500000 learning
points. When MLP’s output is nearer 1, this point is classified
to red spiral. And when MLP’s output is nearer 0, this point is
classified to blue spiral. This result shows that the chaos glial
network connected to MLP can solve TSP.

Fig. 9. Classification of two spirals.

V. CONCLUSION

In our study, we have proposed a chaos glial network. This
network gave chaotic oscillations to the second hidden layer’s
neuron and this chaotic oscillation propagates to other neurons.
We confirmed that the chaos glial network connected to MLP
gains better performance than the conventional MLP and into
the random glial network connected to MLP for solving TSP.
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