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Abstract

We proposed chaos glial network connected to Multi-Layer
Perceptron (MLP). The glial network is inspired by astrocyte
which is glial cell in the brain. Glial cell generates chaotic
oscillation and this oscillation is propagated other glial cells
into the glial network. We consider that this oscillation gives
good influence to MLP learning.

In this paper, we investigate chaos glial network connected
to MLP in some conditions. We apply the MLP networks for
solving Two-Spiral Problem (TSP). TSP is a problem which
classifies two spirals drawn on the plane, and it is famous
as the high nonlinear problem. By computer simulations for
solving TSP, we confirm that chaos glial network connected
to MLP has strong dependency for glial network parameters.

1. Introduction

Back Propagation (BP) was introduced by Rumelhart in
1986 [1]. BP is used for learning algorithm of Multi-Layer
Perceptron (MLP) and the error propagates backwards in the
network. MLP using BP algorithm is well known to perform
for the pattern classification tasks. However, the solution
of the network often falls into the local minimum, because
BP uses the steepest descent method for the leaning process.
Generally, if the solution of MLP falls into the local mini-
mum, it can not escape. In order to avoid this problem, some
methods to release the solution from the local minimum are
required.

Recently, the mechanism of astrocyte becomes clear with
the advances in neuroscience technology. Astrocyte is a glial
cell which existing in a central nervous system of brain. Sev-
eral research groups discovered that astrocytes affect to neu-
rons with signal [2]. We proposed a chaos glial network con-
nected that to MLP and we confirmed this MLP network was
better performance than conventional MLP [3]. In the glial
network, glial cell connected to neighborhood glial cells and
influence of glial cell propagates. We showed that this net-

work gave good influence to MLP learning.
In this study, we investigate chaos glial network connected

to MLP in some conditions. We clearly discuss parametric
dependency of chaos glial network connected to MLP. We
apply the MLP to the TSP [4] and confirm the efficiency by
computer simulations.

2. Multi-Layer Perceptron

MLP is the most famous feed forward neural network. This
network is used for pattern recognition, pattern classification,
and other tasks. MLP has some layers, it has mainly input
layer, hidden layer, and output layer. Generally, it is known
that MLP can solve a more difficult task if the number of layer
or neuron is increased. We consider MLP which is composed
of four layers (one input layer, two hidden layers and one out-
put layer), and MLP has the glial network in the second layer
of the hidden layer. The proposed glial network connected to
MLP structure (connected 2-20-40-1) is shown in Fig.1.

Figure 1:Chaos glial network connected to MLP.
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2.1. Neuron Updating Rule

The updating rule of neurons in the input layer, the first hid-
den layer and the output layer is described by Eq. (1) which
is conventional updating rule.

xi(t + 1) = f

 n∑
j=1

wi j (t)x j(t) − θi(t)

 (1)

In the chaos glial network connected to MLP, chaotic oscil-
lation is added to neurons in the second hidden layer. This
neuron’s updating rule is following as Eq. (2).

xi(t + 1) = f

 n∑
j=1

wi j (t)x j(t) − θi(t) + αΨi(t)

 , (2)

wherex : input or output,w : weight parameter,θ : threshold,
ψ, Ψ : random oscillation,α : amplitude of random noise
and f : output function. And we use sigmoid for the output
function as Eq. (3).

f (a) =
1

1+ e−a
(3)

In the biological neural network, it is known that the glial
cells affect to the neighbor neurons over a wide range by prop-
agating in the network [5]. In order to realize phenomena, we
add chaotic oscillation to neurons by using Eq. (4). In this
simulation, we use skew tent map which is given Eq. (5).

Ψi(t) =

m∑
k=−m

β|k|ψi+k(t − k), (4)

ψi(t + 1) =


2ψ(t)+1−A

1+A (−1 ≤ ψ(t) ≤ A)

−2ψ(t)+1+A
1−A (A < ψ(t) ≤ 1)

, (5)

whereβ denotes attenuation parameter andk is the propagat-
ing range in the glial network. Chaotic oscillation is propa-
gating in the glial network as shown in Fig.2 and it takes time
depending on distance. For example, when the glial cell is lo-
cated three units far from certain neuron, effect of chaotic os-
cillation arrives to the neuron after three learning steps. And
chaotic oscillation decreases while chaos is propagating in the
network.

2.2. Back Propagation

The error of MLP propagates backward in the feed forward
neural network. BP algorithm changes value of weights to
obtain smaller error than before. The error of the network is
given by Eq. (6).

E =
1
2

n∑
i=1

(ti −Oi)
2, (6)

Figure 2:Propagating chaotic oscillation in the network.

where E: error value, t: target value and O: neuron output. By
changing the value of weights, MLP’s error becomes smaller.
Therefore, partial differential of the weight is carried out by
Eq. (7).

∆Wk j = −η
∂E
∂wk j

(7)

3. Simulations

In this section, the difference in the performance of our
MLP; We investigate behavior of MLP as changing glial net-
work’s parameters.

3.1. Two-Spiral Problem

We apply the proposed network for solving TSP [4]. MLP
learns to each point of two spirals, and MLP learns by us-
ing the standard BP algorithm. In this simulation, we use 98
points of two spiral for learning.

3.2. Simulation Results

Each MLP learns the two spirals by setting up same
weights before learning process. We prepare 98 data of two
spirals as shown in Fig.3. The number of learning points is
fixed as 500000. We investigate the error which is modified
in the meantime. The error function is defined as Eq. (8).

E =
1
n

n∑
i=1

|ti −Oi | (8)
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Figure 3:Two-spiral problem.

3.2.1. m Dependency

We prepare 98 data of two spirals. The number of learning
points is fixed as 500000. We change the propagating rangem
(5, 10, 20 and 40) in the Eq. (4) and we useβ = 0.8. Table1
shows simulation result of each MLP learn to 98 points.

Table 1: Performance of MLP with chaos glial network by
changing propagating range of chaotic oscillations.

Points 5 10 20 40

100000 0.318 0.318 0.299 0.299

200000 0.194 0.230 0.197 0.200

250000 0.152 0.182 0.149 0.153

300000 0.103 0.129 0.084 0.097

350000 0.092 0.108 0.065 0.073

400000 0.078 0.085 0.050 0.069

450000 0.075 0.075 0.043 0.044

500000 0.068 0.077 0.035 0.036

From this table, when the propagating range is fixed as
m=20, 40, MLP gains better performance than the case of
m=5, 10. We consider that propagating oscillation is becom-
ing small byβ in the far glial cell.

Figure4 is typical result as using eachm. In this result,
MLP learning curve converged earlier as propagating oscilla-
tions are more wide range.

3.2.2. β Dependency

In this simulation, we usem = 20 from before simulation
result. The number of learning points is fixed as 500000. Ta-

Figure 4:Error curve by MLP network as changingm.

ble 2 shows result of each MLP as changingβ (0.2, 0.4, 0.6,
0.8 and 1.0).

Table 2: Performance of MLP with chaos glial network by
changing attenuation parameter.

Points 0.2 0.4 0.6 0.8 1.0

100000 0.309 0.291 0.307 0.299 0.396

200000 0.220 0.198 0.206 0.197 0.301

250000 0.164 0.136 0.160 0.149 0.258

300000 0.133 0.114 0.112 0.084 0.229

350000 0.104 0.087 0.090 0.065 0.231

400000 0.077 0.078 0.073 0.050 0.195

450000 0.064 0.072 0.066 0.043 0.188

500000 0.060 0.062 0.053 0.035 0.179

We can see that MLP obtains the best result when the at-
tenuation parameter is set toβ = 0.8. While, in the case of
β = 1.0, MLP shows the worst result. Moreover, the results
become better by increasing the value ofβ expectβ = 1.0.
We consider that influences of other glial cells are important
for MLP learning.

Figure5 is typical result of changing the attenuation pa-
rameter. The learning curve ofβ = 1.0 is very vibrating be-
cause chaotic oscillation is too large.

3.2.3. η Dependency

We showed this MLP network gives the best result to use
m = 20 andβ = 0.8. In this section, we investigate learning
coefficient dependency of our MLP. We use different learning
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Figure 5:Error curve by MLP networks as changingβ.

coefficient (η = 0.025, 0.05, 0.1, 0.2, 0.4). From this table,

Table 3: Performance of MLP with chaos glial network by
changing learning coefficient.

Points 0.025 0.05 0.10 0.20 0.40

100000 0.396 0.299 0.158 0.146 0.477

200000 0.351 0.197 0.071 0.148 0.498

250000 0.342 0.149 0.051 0.222 0.489

300000 0.329 0.084 0.048 0.198 0.495

350000 0.321 0.065 0.037 0.215 0.508

400000 0.314 0.050 0.064 0.234 0.492

450000 0.309 0.043 0.082 0.234 0.495

500000 0.303 0.035 0.089 0.233 0.494

we confirm that the error of MLP can converge fast when
the learning coefficient is set to the large value. However, if
the parameter of the learning coefficient is too large such as
η = 0.2, 0.4, MLP hardly learn to the two-spiral. When the
learning coefficient is very small (η = 0.025), MLP could not
finish learning at 500000 times.

Figure6 shows one example of the error curve as changing
η. When the learning coefficient is fixed asη = 0.4, the error
curve vibrates and MLP could not learn the two-spiral. In the
case ofη = 0.05, 0.1, 0.2, the learning curves are very smooth
and when learning coefficient is large, convergence of error is
fast.

4. Conclusions

In our study, we have investigated parameter dependency
of chaos glial network connected to MLP. This network gave

Figure 6:Error curve by MLP networks as changingη.

chaotic oscillations to the second hidden layer’s neuron. We
confirmed that chaos glial network connected to MLP had
strong dependency for glial network parameter.
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