
Investigation of Network-Structured Particle Swarm Optimization

Haruna Matsushita† and Yoshifumi Nishio†

†Tokushima University
2–1 Minami-Josanjima, Tokushima, Japan

Phone:+81–88–656–7470, Fax:+81–88–656–7471
Email: {haruna,nishio}@ee.tokushima-u.ac.jp

Abstract

Our previous study has proposed the Network-Structured Par-
ticle Swarm Optimizer considering neighborhood relation-
ships (NS-PSO). This study investigates the association be-
tween the network structure and the optimization perfor-
mance by varying the degree of the small-world of NS-PSO.

1. Introduction

Particle Swarm Optimization (PSO) [1] is an algorithm to
simulate the movement of flocks of birds. In PSO algorithm,
there are no special relationships between particles. Each par-
ticle position is updated according to its personal best position
and the best particle position among the all particles, and their
weights are determined at random in every generation.

On the other hand, the Self-Organizing Map (SOM) [2] is
an unsupervised learning and is a simplified model of the self-
organizing process of the brain. The map consists of neurons
located on a hexagonal or rectangular grid. The neurons self-
organize statistical features of the input data according to the
neighborhood relationship of the map structure.

In our past study, we have applied the concept of SOM
to PSO and have proposed Network-Structured Particle
Swarm Optimizer considering neighborhood relationships
(NS-PSO) [3]. All particles of NS-PSO are connected to ad-
jacent particles by a neighborhood relation, which dictates
the topology of the networks. The particles directly con-
nected on the network share the information of their own past
best position. In every generation, we find a winning parti-
cle, whose function value is the best among all particles, as
SOM algorithm, and each particle is updated depending on
the neighborhood distance between it and the winner on the
network. NS-PSO can greatly improve the optimization per-
formance from the standard PSO. Furthermore, we applied
NS-PSO to the various network topology [4],[5] and found
that the circular-topology and the hexagonal-topology are ap-
propriate for the simple unimodal functions and the complex
multimodal functions, respectively. However, the relevance
between the behaviors of NS-PSO with various topology and
its parameters was not completely clear.

In this study, we investigate the association between the
network structure and the optimization performance by vary-
ing the degree of the small-world of NS-PSO with small-
world topology [6]. From results, we confirm that the small-
world network is suitable to the unimodal function, and the
random graph is suitable to the multimodal functions which
including a lot of local optima.

2. Network-Structured PSO with Small-World Topology
Considering Neighborhood Relationships (NS-PSO)

In the algorithm of the standard PSO, multiple solutions
called “particles” coexist. At each time step, the particle flies
toward its own past best position and the best position among
all particles. Each particle has two informations;positionand
velocity. The position vector of each particlei and its veloc-
ity vector are represented byXi = (xi1, · · · , xid, · · · , xiD)
andV i = (vi1, · · · , vid, · · · , viD), respectively, where (d =
1, 2, · · · , D), (i = 1, 2, · · · ,M ) andxid ∈ [xmin, xmax].

The standard PSO has no neighborhood relationship. On
the other hand, in the algorithm of NS-PSO, the particles are
connected to other particles according to the topology of the
network and share their local best position with neighbors.

2.1. Small-World Network (WS Model)

In this study, we investigate the behavior of the NS-PSO
with small-world topology proposed by Watts and Strogatz
(called WS model). The small-world topology is defined on
a lattice withM particles and periodic boundary conditions.

(1) Connect each particlei to its k neighbor particles ac-
cording to the topology of 1-dimensional lattice.

(2) Rewire each particlei to another particle chosen at ran-
dom with probabilityp.

Whenp = 0, the network topology is 1-dimensional lat-
tice, and whenp = 1, it is a random graph.

2.2. Algorithm of NS-PSO with Small-World Topology

This section explains the algorithm of NS-PSO with the
small-world topology.
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Table 1:Four Benchmark Functions.

Function name Benchmark Function Initialization Space

4th De Jong’s function; f1(x) =
D∑

d=1

dx4
d, x ∈ [−1.28, 1.28]D

Rosenbrock’s function; f2(x) =
D−1∑

d=1

(
100

(
x2

d − xd+1

)2
+ (1− xd)

2
)

, x ∈ [−2.048, 2.048]D

Rastrigin’s function; f3(x) =
D∑

d=1

(
x2

d − 10 cos (2πxd) + 10
)
, x ∈ [−5.12, 5.12]D

Stretched V sine wave function;f4(x) =
D−1∑

d=1

(x2
d + x2

d+1)
0.25

(
1 + sin2(50(x2

d + x2
d+1)

0.1)
)
, x ∈ [−10, 10]D

(Step1) (Initialization) Let a generation stept = 0. Ran-
domly initialize the particle positionXi, initialize its ve-
locity V i for each particlei to zero, and initializeP i =
(pi1, pi2, · · · , piD) with a copy ofXi. Evaluate the fitness
f(Xi) for each particlei and findP g with the best fitness
among all the particles. Define a particleg as the winnerc.
Connect all the particles according to the subsection2.1. Find
Li = (li1, li2, · · · , liD) with the best fitness among the di-
rectly connected particles, namely own neighbors.
(Step2)Evaluate the fitnessf(Xi) and find a winning par-
ticle c with the best fitness among the all particles at current
generationt;

c = arg min
i
{f (Xi(t))}. (1)

For each particlei, if f(Xi) < f(P i), update the personal
best position (calledpbest) by P i = Xi.

Let P g represents the best position with the best fitness
among all particles so far (calledgbest). If f(Xc) < f(P g),
updategbestby P g = Xc, whereXc is the position of the
winnerc.
(Step3)Find each local best position (calledlbest) Li among
the particlei and its neighborhoods which are directly con-
nected withi on the network. For each particlei, updatelbest
Li, if needed.
(Step4)UpdateV i andXi of each particlei depending on
its lbest, the winner’s positionXc and the distance on the
network betweeni and the winnerc, according to

V i(t + 1) = wV i(t) + c1Rand(·) (Li −Xi(t))
+ c2hc,i (Xc −Xi(t)) ,

Xi(t + 1) = Xi(t) + V i(t + 1),

(2)

wherew is the inertia weight determining how much of the
previous velocity of the particle is preserved.c1 andc2 are
two positive acceleration coefficients, generallyc1 = c2, and

Rand(·) = (rand1, rand2, · · · , randD) is an uniform ran-
dom number vector fromU(0, 1). hc,i is the fixed neighbor-
hood function defined by

hc,i = exp
(
−dis(c, i)

σ2

)
, (3)

wheredis(c, i) is the shortest-path distance between the win-
ner c and the particlei on the network and is calledneigh-
borhood distance. The fixed parameterσ corresponds to
the width of the neighborhood function. Therefore, largeσ
strengthens particles’ spreading force to the whole space, and
smallσ strengthens their convergent force toward the winner.
(Step5)Let t = t + 1 and go back to (Step2).

3. Numerical Experiments

In order to evaluate the performance of NS-PSO with the
small-world topology and to investigate its behavior, we use
four benchmark optimization problems summarized in Ta-
ble 1. f1 is an unimodal function, andf2, f3 andf4 are mul-
timodal functions with numerous local optima. The optimum
solutionx∗ of Rosenbrock’s functionf2 is [1, 1, . . . , 1], and
x∗ of the other functions are all[0, 0, . . . , 0]. The optimum
valuesf(x∗) of all the functions are 0. All the functions have
D = 50 variables.

The population sizeM is set to 36 in PSO, and the network
size is 36 in NS-PSO. For all PSOs, the parameters are set as
w = 0.7 andc1 = c2 = 1.6. The neighborhood radiusσ of
NS-PSO is 2 forf4 and 1.5 for other functions. To generate
the small-world topology, the neighborhood parameterk is
set to 2. We carry out the simulations repeated 100 times for
all the optimum functions with 3000 generations.

We consider the behavior according to the network topol-
ogy in terms of the clustering coefficientC [6] and the aver-
age shortest-path lengthL. Figure2 shows the network av-
erage clustering coefficientC and the average shortest-path
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Figure 1: Landscape of the four benchmark functions with two variables. (a)4th De Jong’s function. (b) Rosenbrock’s
function. (c) Rastrigin’s function. (d) Stretched V sine wave function.
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Figure 2: Network average clustering coefficientC and the
average shortest-path lengthL of WS network with varying
the probabilityp. M = 36. k = 2.

lengthL of WS network with the population size 36 which is
used in this simulation. From this figure, we can confirm that
the network has the small-world property which satisfies the
smallL(p) and the largeC(p) whenp ∈ [0.03, 0.1].

3.1. Comparison results of PSO and NS-PSO

Experimental results of the standard PSO with no connec-
tions and NS-PSO with small-world topology by using vari-
ous the probabilityp are summarized in Table2. p = 0 and
p = 1 mean that the networks are the regular network and the
random graph, respectively. We skip comparison with the re-
sults of PSO with small-world topology because our previous
study [5] has shown that its results are worse than the standard
PSO. From this table, we can confirm that the standard PSO
has never obtained the better results than any NS-PSOs on all
the benchmarks. In addition, NS-PSOs significantly improve
the optimization efficiency for all the functions.

Next, let us note the probabilityp and its performance. At
the unimodal function asf1, NS-PSO with the regular net-
work (asp = 0) obtains better results than the random graph
network (asp = 1), and NS-PSO with the small-world net-
work asp = 0.03 andp = 0.1 can obtain effective results

than other networks. On the other hand, at all the multimodal
functions asf2, f3 andf4, the results of the network with
some irregularities asp > 0 are better than the regular net-
work asp = 0. Furthermore, when the network is the random
graph asp = 1, the performances are the best.

Let us consider the association between the probability and
its performance in detail. Simulation results of NS-PSO with
small-world topology by varying the probabilityp are shown
in Fig. 3. It should be noted that the characteristic is dif-
ferent between for the unimodal function asf1 and the mul-
timodal functions. For the unimodal function as Fig.3(a),
the regular network can obtain the acceptable results, and the
performance achieves the best result when the network is the
small-world. However, as the network becomes the random
graph with largep, the optimization result grows worse than
the regular network. In contrast, for the unimodal function
as Figs.3(b)–(c), the results of the regular network are the
worst, and the performance grows better as the network be-
comes the random graph. These results are because that the
diversity of the particles is different between the regular net-
work and the random graph. On the regular network and the
network with smallp, the shortest path lengthL and the num-
ber of particles in local neighborNl are almost same for each
particle. From these effects, it is easy to transmit the infor-
mation oflbestto the whole particles, therefore, the network
with small p is effective for the unimodal function which is
simple. However, the premature communication produces the
premature convergence, then, the regular network easily goes
into local optima in the multimodal functions. On the other
hand, NS-PSO with small-world topology. whosep is large,
contains various kinds of particles which has different short-
est path length and different size of local neighbors. Because
these effects produce the diversity of the particles and avert
the premature convergence, the particles of NS-PSO with the
random-network can easily escape from the local optima.

4. Conclusions

In this study, we have investigated the association between
the network structure and the optimization performance by
varying the degree of the small-world of Network-Structured
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Table 2:Comparison results of PSO and NS-PSO with small-world topology on 4 test functions.

f PSO
NS-PSO with small-world topology

p = 0 p = 0.03 p = 0.1 p = 1

f1
Mean 1.58e-35 4.41e-58 1.87e-59 5.48e-61 9.45e-57

Minimum 9.86e-42 2.66e-65 6.06e-69 3.38e-71 4.60e-67

f2
Mean 55.24 38.11 37.23 37.22 35.67

Minimum 36.74 28.05 25.38 23.31 23.81

f3
Mean 148.31 82.87 74.91 67.51 66.77

Minimum 94.52 48.75 35.82 39.80 33.83

f4
Mean 65.62 30.62 29.78 21.40 16.13

Minimum 39.36 12.64 7.26 4.94 4.37
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Figure 3:Results by varying the probabilityp. (a) 4th De Jong’s functionf1. (b) Rosenbrock’s functionf2. (c) Rastrigin’s
functionf3. (d) Stretched V sine wave functionf4.

Particle Swarm Optimization. The simulation results have
shown that NS-PSO can greatly improve the optimization
performance from the original PSO. we have found that the
small-world network is suitable to the unimodal function,
and the random graph is suitable to the multimodal functions
which including a lot of local optima. From these results,
we can say that NS-PSO with small-world topology can ob-
tain effective results flexibly by rewiring the network struc-
ture for various optimization problems without changing the
algorithm structure.
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