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Abstract In this study, we investigate the association between the
network structure and the optimization performance by vary-
Our previous study has proposed the Network-Structured Ray the degree of the small-world of NS-PSO with small-
ticle Swarm Optimizer considering neighborhood relatiog;gr|d topology F]. From results, we confirm that the small-
ships (NS-PSO). This study investigates the association {@yid network is suitable to the unimodal function, and the

tween the network structure and the optimization perf@ndom graph is suitable to the multimodal functions which
mance by varying the degree of the small-world of NS-PSGycjuding a lot of local optima.

1. Introduction 2. Network-Structured PSO with Small-World Topology

Particle Swarm Optimization (PSO)][is an algorithm to Considering Neighborhood Relationships (NS-PSO)

there are no special relationships between particles. Each pglred “particles” coexist. At each time step, the particle flies
ticle position is updated according to its personal best positigfard its own past best position and the best position among
and the best particle position among the all particles, and thgifarticles. Each particle has two informatiopssitionand
weights are determined at random in every generation.  ye|ocity The position vector of each particlend its veloc-

On the other hand, the Self-Organizing Map (SOK)i§ ity vector are represented bY; = (21, -+ , Zid, - ,iD)
an unsupervised learning and is a simplified model of the seffqy/, — (vi1,++ ,ia, - ,vip), respectively, whered(=
organizing process of the brain. The map consists of neurgns ... Dy, (i=1,2,---, M) andz,q € [Zmin, Tmax)-
located on a hexagonal or rectangular grid. The neurons selfrhe standard PSO has no neighborhood relationship. On
organize statistical features of the input data according to {Rg other hand, in the algorithm of NS-PSO, the particles are
neighborhood relationship of the map structure. connected to other particles according to the topology of the

In our past study, we have applied the concept of SOftwork and share their local best position with neighbors.
to PSO and have proposed Network-Structured Particle

Swarm Optimizer considering neighborhood relationships

(NS-PSO) E]. All particles of NS-PSO are connected to aog'l' Small-World Network (WS Model)

jacent particles by a neighborhood relation, which dictatesin this study, we investigate the behavior of the NS-PSO
the topology of the networks. The particles directly comvith small-world topology proposed by Watts and Strogatz
nected on the network share the information of their own pgstlled WS model). The small-world topology is defined on
best position. In every generation, we find a winning part-lattice with}/ particles and periodic boundary conditions.
cle, whose function value is the best among all particles, ag1) Connect each particleto its k& neighbor particles ac-
SOM algorithm, and each particle is updated depending gbrding to the topology of 1-dimensional lattice.

the neighborhood distance between it and the winner on thg2) Rewire each particléto another particle chosen at ran-
network. NS-PSO can greatly improve the optimization pefom with probabilityp.

formance from the standard PSO. Furthermore, we appliedyhenp = 0, the network topology is 1-dimensional lat-
NS-PSO to the various network topolog$,[5] and found tice, and whem = 1, it is a random graph.

that the circular-topology and the hexagonal-topology are ap-

propriate for the simple unimodal functions and the compl%_ Algorithm of NS-PSO with Small-World Topology
multimodal functions, respectively. However, the relevance
between the behaviors of NS-PSO with various topology andThis section explains the algorithm of NS-PSO with the
its parameters was not completely clear. small-world topology.
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Table 1:Four Benchmark Functions.

Function name Benchmark Function Initialization Space
D

4th De Jong’s function; filw) =) day, r € [—1.28,1.28)"
d=1
D—-1 )

Rosenbrock’s function; fo(z) = Z (100 (25— mas1)” +(1— .rd)Q) , r € [-2.048,2.048]P
d=1
D

Rastrigin’s function; fa(w) =Y (2§ — 10cos (2mxq) + 10) r € [-5.12,5.12]P
d=1

o
L

Stretched V sine wave function; f4(x)

(z3 +23,1)"% (1 +sin®(50(z3 + 23,1)"")), =z € [-10,10]7

d=1

(Stepl) (Initialization) Let a generation step = 0. Ran- Rand(-) = (randy,rands,--- ,randp) is an uniform ran-
domly initialize the particle positionX;, initialize its ve- dom number vector fror/(0,1). h.; is the fixed neighbor-
locity V; for each particlei to zero, and initializeP; = hood function defined by
(pit, pias - - -, pip) With a copy of X ;. Evaluate the fithess o
F(X;) for each particle and find P, with the best fitness hes = exp (dw(“)> 3)

. . N . . C,t 2 ’
among all the particles. Define a partigleas the winnek. o

IC_J(_)nfe(;t_ alll _the parltfcles i‘;}c&rd'gg tf{) ft.Te subsedtlanli;]nd d.wheredis(c, i) is the shortest-path distance between the win-
i = (lin, lig, -+, Lip) with the best fitness among the dip o - 5 'the particle on the network and is calledeigh-
rectly connected particles, namely own neighbors.

; , o borhood distance The fixed parametes corresponds to
(StepZ) !Evaluate the. fitnesg(X;) and find a WINNING PAr 4,0 \vidth of the neighborhood function. Therefore, lasge
ticle ¢ with the best fithess among the all particles at curr

enerationt: e&"engthens particles’ spreading force to the whole space, and
9 ' smallo strengthens their convergent force toward the winner.

¢ = argmin{ f (X.(t))}. 1) (Step5)Lett =t + 1 and go back to (Step2).

For each particlé, if f(X;) < f(P;), update the personal3. Numerical Experiments

best position (callepbes) by P, = X ;. .
Let P, represents the best position with the best fitnessIn order to evaluate the performance of NS-PSO with the

among all particles so far (callggbes}. If f(X.) < f(P,), Small-world topology and to investigate its behavior, we use

updategbestoy P, = X, whereX_ is the position of the four ben'chmark.optlmlzanor? problems summarized in Ta-
winnere. ble 1. f; is an unimodal function, ang,, f3 and f, are mul-

(Step3)Find each local best position (callésbs) L; among t|mOQaI fu*nctlons with nun)erous I_ocal _opﬂma. The optimum
o . . . ; solutionz* of Rosenbrock’s functiorfs is [1,1,...,1], and

the particlei and its neighborhoods which are directly con-_ of the other functions are alb. 0 ol. The optimum

nected withi on the network. For each particleupdatdbest r - unctl . a,0, ..., 0]. pumu

L., if needed. valuesf(z*) of all the functions are 0. All the functions have

—— , D = 50 variables.
(Step4)UpdateV; and X ; of each particle depending on . . . .
its Ibest the winner’s positionX . and the distance on the The population sizé/ is setto 36 in PSO, and the network

network between and the winner., according to size is 36 in NS-PSO. For all PSOs., the parameter; are set as
' w = 0.7 andec; = ¢z = 1.6. The neighborhood radius of
Vi(t+1) = wVi(t) + aRand (") (L; — X;(t)) NS-PSO is 2 forf, and 1.5 for other functions. To generate
+eohes (Xo— Xi(8) the small-world topology, the nelghborhood param@tes
2hejilte E (@) setto2. We carry out the simulations repeated 100 times for
Xi(t+1)= X))+ V,;(t+1), all the optimum functions with 3000 generations.

We consider the behavior according to the network topol-
wherew is the inertia weight determining how much of thegy in terms of the clustering coefficie6t[6] and the aver-
previous velocity of the particle is preserved. andc, are age shortest-path length Figure2 shows the network av-
two positive acceleration coefficients, generally= c,, and erage clustering coefficieif and the average shortest-path
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Figure 1: Landscape of the four benchmark functions with two variables.4&)De Jong’s function. (b) Rosenbrock’s
function. (c) Rastrigin’s function. (d) Stretched V sine wave function.

than other networks. On the other hand, at all the multimodal
functions asfs, f3 and fy4, the results of the network with
some irregularities ag > 0 are better than the regular net-
work asp = 0. Furthermore, when the network is the random
graph ag = 1, the performances are the best.

Let us consider the association between the probability and
its performance in detail. Simulation results of NS-PSO with
small-world topology by varying the probabiligyare shown
in Fig. 3. It should be noted that the characteristic is dif-

‘ ferent between for the unimodal function Agsand the mul-

o' 10° timodal functions. For the unimodal function as Fifa),

the regular network can obtain the acceptable results, and the
performance achieves the best result when the network is the
small-world. However, as the network becomes the random
graph with largep, the optimization result grows worse than
the regular network. In contrast, for the unimodal function
as Figs.3(b)—(c), the results of the regular network are the
worst, and the performance grows better as the network be-
lengthL of WS network with the population size 36 which i§omes the random graph. These results are because that the
used in this simulation. From this figure, we can confirm théliversity of the particles is different between the regular net-
the network has the small-world property which satisfies t#@rk and the random graph. On the regular network and the

small L(p) and the large” (p) whenp € [0.03,0.1]. network with smalp, the shortest path lengthand the num-
ber of particles in local neighba¥; are almost same for each

particle. From these effects, it is easy to transmit the infor-
mation oflbestto the whole particles, therefore, the network
Experimental results of the standard PSO with no conn&gth smallp is effective for the unimodal function which is
tions and NS-PSO with small-world topology by using vartimple. However, the premature communication produces the
ous the probability are summarized in Tabl2 p = 0 and Premature convergence, then, the regular network easily goes
p = 1 mean that the networks are the regular network and #Ato local optima in the multimodal functions. On the other
random graph, respectively. We skip comparison with the f&and, NS-PSO with small-world topology. whosés large,
sults of PSO with small-world topology because our previoGgntains various kinds of particles which has different short-
study [] has shown that its results are worse than the stand@fd path length and different size of local neighbors. Because
PSO. From this table, we can confirm that the standard Pthese effects produce the diversity of the particles and avert
has never obtained the better results than any NS-PSOs othgllpremature convergence, the particles of NS-PSO with the
the benchmarks. In addition, NS-PSOs significantly improt@dom-network can easily escape from the local optima.
the optimization efficiency for all the functions.
Next, let us note the probability and its performance. At4. Conclusions
the unimodal function ag;, NS-PSO with the regular net-
work (asp = 0) obtains better results than the random graphin this study, we have investigated the association between
network (asp = 1), and NS-PSO with the small-world netthe network structure and the optimization performance by
work asp = 0.03 andp = 0.1 can obtain effective resultsvarying the degree of the small-world of Network-Structured

107 1
Probability p

Figure 2: Network average clustering coefficie@tand the
average shortest-path lengthof WS network with varying
the probabilityp. M = 36. k = 2.

3.1. Comparison results of PSO and NS-PSO
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Table 2:Comparison results of PSO and NS-PSO with small-world topology on 4 test functions.

NS-PSO with small-world topology

f PSO p=0 p=0.03 p=0.1 p=1
f Mean 1.58e-35| 4.41e-58 1.87e-59 5.48e-61 9.45e-57
L1 Minimum || 9.86e-42| 2.66e-65 6.06e-69 3.38e-71 4.60e-67
f Mean 55.24 38.11 37.23 37.22 35.67
2| Minimum || 36.74 28.05 25.38 23.31 23.81
f Mean 148.31 82.87 74.91 67.51 66.77
731 Minimum 94,52 48.75 35.82 39.80 33.83
f Mean 65.62 30.62 29.78 21.40 16.13
4| Minimum 39.36 12.64 7.26 4.94 4.37
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Figure 3:Results by varying the probabilify. (a) 4" De Jong’s functionf;. (b) Rosenbrock’s functiorf,. (c) Rastrigin’s
function f3. (d) Stretched V sine wave functigf.

Particle Swarm Optimization. The simulation results have
shown that NS-PSO can greatly improve the optimizatti]

performance from the original PSO. we have found that the

small-world network is suitable to the unimodal function[,s]

and the random graph is suitable to the multimodal functions

which including a lot of local optima. From these results,
we can say that NS-PSO with small-world topology can opt]
tain effective results flexibly by rewiring the network struc-
ture for various optimization problems without changing the

algorithm structure.
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