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Abstract—This study proposes Network-Structured
Particle Swarm Optimizer (NS-PSO) with Small-World
topology. All particles are connected to adjacent particles
depending on the small-world network. The directly con-
nected particles share their own best position. Each particle
is updated depending on the neighborhood distance on the
network between it and a winner, whose function value is
best among all particles. We apply NS-PSO with small-
world topology to various optimization problems and con-
firm the effectiveness of the proposed model.

1. Introduction

Particle Swarm Optimization (PSO) [1] is an algorithm
to simulate the movement of flocks of birds. Due to the
simple concept, easy implementation and quick conver-
gence, PSO has attracted much attention and is used to
wide applications in different fields in recent years. In PSO
algorithm, there are no special relationships between parti-
cles. Each particle position is updated according to its per-
sonal best position and the best particle position among the
all particles, and their weights are determined at random
in every generation. Due to these features, the standard
PSO greatly depends on its parameters and converge pre-
maturely in case of solving complex problems which have
local optima.

On the other hand, the Self-Organizing Map (SOM) [2]
is an unsupervised learning algorithm. SOM consists of
neurons located on 2-dimensional network. The neurons
self-organize statistical features of the input data according
to the neighborhood relationship of the map structure.

Various topological neighborhoods for PSO have been
considered by researches [3]–[7]. Each particle shares its
best position among neighboring particles on the network.
However, the information of each particle is not updated
depending on the neighborhood distance on the network.

In our past study, we have applied the concept of SOM
to PSO and have proposed Network-Structured Particle
Swarm Optimizer considering neighborhood relationships
(NS-PSO) [8][9]. All particles of NS-PSO are connected to
adjacent particles by a neighborhood relation, which dic-
tates the topology of the networks. The connected parti-
cles, namely neighboring particles on the network, share
the information of their own past best position. In every
generation, we find a winner particle, whose function value
is the best among all particles, as SOM algorithm, and each

particle is updated depending on the neighborhood distance
between it and the winner on the network. We applied NS-
PSO to the various network topology as rectangular, hexag-
onal, cylinder and toroidal. From comparison results, we
find that the circular-topology is effective for the simple
unimodal functions and the hexagonal-topology is appro-
priate for the complex multimodal functions.

In this study, we apply NS-PSO to well-known net-
work; “small-world network” suggested by Watts and Stro-
gatz [10]. Simulation results and comparisons with the pre-
vious PSOs show that the proposed NS-PSO with small-
world topology can effectively enhance the searching effi-
ciency.

2. Network-Structured Particle Swarm Optimizer with
Small-World Topology Considering Neighborhood
Relationships (NS-PSO)

In the algorithm of the standard PSO, multiple solutions
called “particles” coexist. At each time step, the particle
flies toward its own past best position and the best posi-
tion among all particles. Each particle has two informa-
tions; position and velocity. The position vector of each
particle i and its velocity vector are represented by Xi =

(xi1, · · · , xid, · · · , xiD) and Vi = (vi1, · · · , vid, · · · , viD), re-
spectively, where (d = 1, 2, · · · ,D), (i = 1, 2, · · · ,M) and
xid ∈ [xmin, xmax].

The algorithm of NS-PSO is based on both two struc-
tures; the standard PSO and SOM. NS-PSO has following
three key features.
1. All particles are connected to adjacent particles by a
neighborhood relation, which dictates the topology of the
network.
2. The particles share the local best position between the
neighborhood particles directly connected.
3. In every generation, we find a winner particle with best
function value among all particle as SOM learning.
By these features, each particle of NS-PSO is updated de-
pending on its own best position, the position of the winner
and the neighborhood distance between it and the winner
on the network.

2.1. Small-World Model

In this study, we apply NS-PSO to the 1-dimensional
(1-D) small-world topology shown in Fig. 1(b). The 1-D
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Figure 1: 1-dimensional network topology with 36 parti-
cles. k = 2. (a) 1-dimensional lattice (p = 0). (b) Small-
World topology (p = 0.04). (c) Random graph (p = 1).

small-world topology is defined on a lattice with M par-
ticles and periodic boundary conditions. The 1-D small-
world topology is generated by following algorithm;

(1) Connect each particle i to its k neighbor particles ac-
cording to the topology of 1-dimensional lattice.

(2) Rewire each particle i to another particle chosen at
random with probability p.

When p = 0, the network topology is 1-dimensional lat-
tice, and when p = 1, it is a random graph.

2.2. Algorithm of NS-PSO with Small-World Topology

The algorithm of NS-PSO with the small-world topology
is same as the conventional NS-PSO except its topology
and a neighborhood function as Eq. (3).

(NS-PSO1) (Initialization) Let a generation step t = 0.
Randomly initialize the particle position Xi, initialize its
velocity Vi for each particle i to zero, and initialize Pi =

(pi1, pi2, · · · , piD) with a copy of Xi. Evaluate the objec-
tive function f (Xi) for each particle i and find Pg with the
best function value among all the particles. Define g as the
winner c. Find Li = (li1, li2, · · · , liD) with the best function
value among the directly connected particles, namely own
neighbors. Connect all the particles to adjacent particles
according to the subsection 2.1.
(NS-PSO2) Evaluate the fitness f (Xi) and find a winner
particle c with the best fitness among the all particles at
current time t;

c = arg min
i
{ f (Xi(t))}. (1)

For each particle i, if f (Xi) < f (Pi), the personal best
position (called pbest) Pi = Xi. Let Pg represents the
best position with the best fitness among all particles so far
(called gbest). If f (Xc) < f (Pg), update gbest Pg = Xc,
where Xc = (xc1, xc2, · · · , xcD) is the position of the winner
c.
(NS-PSO3) Find each local best position (called lbest) Li

among the particle i and its neighborhoods, which are di-
rectly connected with i on the network, so far. For each
particle i, update lbest Li, if needed.
(NS-PSO4) Update Vi and Xi of each particle i depending
on its lbest, position of the winner Xc and the distance on

the network between i and the winner c, according to

vid(t + 1) = wvid(t) + c1rand(·) (lid − xid(t))

+ c2hc,i (xcd − xid(t)) ,

xid(t + 1) = xid(t) + vid(t + 1),

(2)

where w is the inertia weight determining how much of the
previous velocity of the particle is preserved. c1 and c2 are
two positive acceleration coefficients, generally c1 = c2,
rand(·) is an uniform random number sample from U(0, 1).
hc,i is the fixed neighborhood function defined by

hc,i = exp

(
−dis(c, i)
σ2

)
, (3)

where dis(c, i) is the shortest-path distance between parti-
cles c and i on the network and is called neighborhood dis-
tance. The fixed parameter σ corresponds to the width of
the neighborhood function. Therefore, large σ strengthens
particles’ spreading force to the whole space, and small σ
strengthens their convergent force toward the winner.
(NS-PSO5) Let t = t + 1 and go back to (NS-PSO2).

3. Simulation

In order to evaluate the performance of NS-PSO with
small-world topology, we use six benchmark optimization
problems summarized in Table 1. f1, f2 and f3 are uni-
modal functions, and f4, f5 and f6 are multimodal func-
tions with numerous local minima. The optimum solution
x∗ of Rosenbrock’s function f2 is [1, 1, . . . , 1], and x∗ of
the other functions are all [0, 0, . . . , 0]. The optimum value
f (x∗) of all the functions is 0. All the functions have D vari-
ables. In this study, D is set to 30 and 50 to investigate the
performances in various dimensions. The landscape maps
of benchmark functions with two variables are shown in
Fig. 2.

We compare NS-PSO with small-world topology to the
standard PSO, PSO with small-world topology and NS-
PSO with rectangular-topology. Features of each algorithm
are follows:
PSO: This is the standard PSO with NO neighborhood re-
lationship. Each particles is updated depending on its pbest
and gbest.
PSO with small-world topology: Its particles are con-
nected to other particles according to small-world network
and share their lbest with directly connected particles. Each
particles is updated depending on its lbest and gbest. The
winner does NOT exist, and the neighborhood distance is
NOT considered.
NS-PSO with various topology: Its particles are con-
nected to other particles according to the topology of the
network and share their lbest with directly connected parti-
cles. Each particles is updated depending on its lbest, win-
ner’s position and the neighborhood distance.

The population size M is set to 36 in PSO, and the net-
work sizes are 36 in NS-PSO with small-world topology
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Table 1: Six Test Functions.
Function name Test Function Initialization Space

Sphere function; f1(x) =
D−1∑
d=1

x2
d, x ∈ [−2.048, 2.048]D

Rosenbrock’s function; f2(x) =
D−1∑
d=1

(
100

(
x2

d − xd+1

)2
+ (1 − xd)2

)
, x ∈ [−2.048, 2.048]D

4th De Jong’s function; f3(x) =
D∑

d=1

dx4
d, x ∈ [−1.28, 1.28]D

Rastrigin’s function; f4(x) =
D∑

d=1

(
x2

d − 10 cos (2πxd) + 10
)
, x ∈ [−5.12, 5.12]D

Ackley’s function; f5(x) =
D−1∑
d=1

(
20 + e − 20e−0.2

√
0.5(x2

d+x2
d+1)

−e0.5(cos(2πxd)+cos(2πxd+1))
)
, x ∈ [−30, 30]D

Stretched V sine wave function; f6(x) =
D−1∑
d=1

(x2
d + x2

d+1)0.25
(
1 + sin2(50(x2

d + x2
d+1)0.1)

)
, x ∈ [−10, 10]D

(a) (b) (c) (d) (e) (f)

Figure 2: Six test functions with two variables. First and second variables are on the x-axis and y-axis, respectively, and
z-axis shows its function value. (a) Sphere function. (b) Rosenbrock’s function. (c) 4th De Jong’s function. (d) Rastrigin’s
function. (e) Ackley’s function. (f) Stretched V sine wave function.

and 6 × 6 in NS-PSO with rectangular-topology. For all
PSOs, the parameters are set as w = 0.7 and c1 = c2 = 1.6.
The neighborhood radius σ of NS-PSO with small-world
topology and with rectangular-topology are 1.6 and 1.5, re-
spectively. To generate the small-world topology, the prob-
ability p is chosen 0.04, and the neighborhood parameter k
is set to 2. We carry out the simulations repeated 30 times
for all the optimization functions with 3000 generations.

3.1. Experimental Results

The performances with the minimum and mean function
values over 30 independent runs on six functions are listed
in Table 2. The best results of the mean values among all
the algorithms are shown in bold.

On both dimension, the standard PSO, PSO with small-
world topology, NS-PSO with rectangular-topology and
with small-world topology achieve the best values 0, 1, 2
and 9 times, respectively. It is interesting to note that PSO
with small-world topology can not obtain better results than
the standard PSO with no connection, and in fact, it dramat-
ically degrades the performance on almost functions. How-

ever, two kinds of NS-PSOs evidently surpass not only the
standard PSO but also PSO with small-world topology, on
almost functions for both dimensions. These results mean
that it is not important to share lbest among neighbors, and
updating with considering the neighborhood distance pro-
duces the effective results. In the updating of NS-PSO, the
neighborhood gaussian function is used, then, the particles
move according to the neighborhood distance between the
winner and them. The roles of the NS-PSO particles are
determined by the connection relationship, and they pro-
duce the diversity of the particles. These effects avert the
premature convergence, and the particles of NS-PSO can
easily escape from the local optima.

In contrast to PSO, NS-PSO with small-world topol-
ogy obtain significantly-improved results over rectangular-
topology. In particular, NS-PSO with small-world topol-
ogy tends to upgrade the performance on unimodal func-
tions as f1, f2 and f3. It is considered that NS-PSO with
small-world topology has advantages of both the particle-
diversity and the ease of exchanging of the particle infor-
mation.

From these results, we can say that NS-PSO, whose par-
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Table 2: Comparison results of PSO and NS-PSO with small-world topology on 6 test functions.

D f
PSO NS-PSO

No connection Small-World Rectangular Small-World

30

f1
Mean 9.10e-51 4.53e-37 6.28e-55 2.16e-75

Minimum 3.16e-56 6.91e-41 1.23e-58 3.66e-85

f2
Mean 16.87 19.57 14.74 5.64

Minimum 2.17 0.70 5.37 1.16

f3
Mean 4.86e-78 2.19e-58 1.22e-89 1.04e-124

Minimum 3.78e-85 2.62e-65 2.07e-96 2.67e-149

f4
Mean 64.34 82.88 42.48 30.99

Minimum 44.77 41.79 23.88 11.94

f5
Mean 70.81 47.58 45.75 66.22

Minimum 5.16 2.58e-14 5.16 5.16

f6
Mean 22.18 22.06 9.29 11.83

Minimum 10.44 11.84 2.4 5.05

50

f1
Mean 2.29e-20 9.35e-17 8.22e-25 1.16e-33

Minimum 4.09e-27 7.31e-20 1.51e-29 4.30e-42

f2
Mean 55.24 66.34 43.61 36.89

Minimum 36.74 25.38 38.48 19.14

f3
Mean 1.58e-35 1.81e-26 1.51e-41 6.52e-60

Minimum 9.86e-42 3.47e-29 7.96e-47 4.35e-69

f4
Mean 148.31 188.41 92.8 61.29

Minimum 94.52 123.37 52.73 28.85

f5
Mean 249.67 125.55 159.62 225.34

Minimum 97.84 19.22 67.60 143.31

f6
Mean 65.62 68.72 41.35 39.20

Minimum 39.36 44.58 21.95 23.02

ticles are updated depending on the neighborhood distance,
is more effective than the standard PSO, which has no
neighborhood relationship, and PSO with network topol-
ogy which does not use the neighborhood distance. Fur-
thermore, although the results slightly depend on the prob-
lems, NS-PSO with small-world topology is suitable for
optimization, especially on unimodal functions.

4. Conclusions

In this study, we have proposed Network-Structured Par-
ticle Swarm Optimizer (NS-PSO) with Small-World topol-
ogy. All particles of NS-PSO are connected to adjacent par-
ticles by a neighborhood relation of small-world network,
and their information are updated depending on the neigh-
borhood topology. We have applied NS-PSO with small-
world topology to optimization problems. We have con-
firmed that NS-PSO, whose particles are updated depend-
ing on the neighborhood distance, is more effective than the
standard PSO, which does not use the neighborhood dis-
tance. Furthermore, NS-PSO with small-world topology
is suitable for optimization, especially on unimodal func-
tions.
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