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Abstract—In this study, synchronization phenomena
observed from coupled van der Pol oscillators involving
periodically forced capacitors are investigated. Firstly, we
confirm effects of parametric excitation on synchroniza-
tion. Next, we investigate behavior of parametric excitation
in coupled system. By carrying out computer calculations
for two to five subcircuits cases, various interesting syn-
chronization phenomena of chaos are confirmed.

1. Introduction

Synchronization is one of the fundamental phenomena in
nature, and one of typical nonlinear phenomena. Therefore,
studies on synchronization phenomena of coupled oscilla-
tors are extensively carried out in various fields, physics
[1], biology [2], engineering and so on. However, issues
that should be investigated for synchronization remain in
existence in spite of many researching. In particular, it
is necessary to investigate synchronization phenomena in
special conditions. There is parametric excitation that in-
creases amplitude of oscillation by periodic changing of a
parameter in the system. Parametric excitation circuit is
one of resonant circuits, and it is important to investigate
various nonlinear phenomena of the parametric excitation
circuits for future engineering applications. In simple oscil-
lator including parametric excitation, Ref. [3] reports that
the almost periodic oscillation occurs if nonlinear inductor
has saturation characteristic. Additionally the occurrence
of chaos is referenced in Refs. [4] and [5].

In the past we have investigated synchronization phe-
nomena in coupled van der Pol oscillators involving time-
varying inductors [1]. In this study, for specify the effect
of parametric excitation on synchronization, we focus on
a parametric excitation which is generated by a capacitor
periodically forced. Then, we investigate synchronization
phenomena observed from coupled van der Pol oscillators
involving periodically forced capacitors. By carrying out
computer calculations for two to five subcircuits cases, var-
ious interesting synchronization phenomena of chaos are
confirmed.

Figure 1: Circuit model.

Figure 2: Subcircuit corresponds to van der Pol oscillator
involving periodically forced capasitor.

2. Circuit model

The circuit model used in this study is shown in Fig 1.
In our system n identical parametrically excited van der
Pol oscillators are coupled by one resistor R. The subcir-
cuit which is parametrically excited van der Pol oscillator
consists of an inductor, a nonlinear resistor and a time-
varying capacitor, which is periodically forced, and real-
ized as Fig. 2. This circuit exhibits bifurcation phenomena
whose diagram is shown in Fig. 3. Figure 4 shows exam-
ples of attractors obtained from the subcircuit. In Fig. 2, the
dashed-line box area corresponds to the time-varying ca-
pacitor which exhibits periodic rectangular characteristics
by an externally switch which gives periodic force. The
characteristics of the time-varying capacitor are given as
following equation.

C = C0γ(t). (1)

γ(τ) is expressed in a rectangular wave as shown in Fig. 5,
and its amplitude and angular frequency are termed α and
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Figure 3: One-parameter bifurcation diagram for α = 0.8,
ω = 1.1 and varying ε.

(a)

(b)

(c)

Figure 4: Attractors and Poincaré maps. α = 0.8 and ω =

1.1. (a) ε = 0.10. (b) ε = 0.12. (c) ε = 0.75.

ω, respectively. The v − i characteristics of the nonlinear
resistor are approximated by the following equation.

id = −g1vk + g3vk. (2)

By changing the variables and the parameters,
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the normalized circuit equations are given by the following
equations.



dxk

dτ
=

1
γ(τ)

{
ε(xk − x3
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}
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dτ
= xk − δ

n∑

j=1

y j.

(4)

In the following computer calculations, the parameter
values are fixed as ε = 0.75, α = 0.80 and ω = 1.10 and (4)
is calculated by using the Runge-Kutta method with step
size ∆t = 0.01.

Figure 5: Function relating to parametrically excitation.

3. Synchronous effects of parametric excitation

Before investigating synchronization phenomena in the
coupled parametrically excited van der Pol oscillators, it
is necessary to investigate synchronization phenomena in
non-coupled chaotic circuits which are identically forced.
Namely, it is necessary to investigate synchronous effects
that all capacitors of the chaotic circuits are changed at the
same time. In this section, for investigate the synchronous
effects we focus on the two identical chaotic circuits. Fig-
ure 6 shows chaotic attractors, time series and rectangular
wave corresponding to the periodically forced capacitor. In
Fig. 6, a chaotic attractor, shown as Fig. 6(a), consists of
upper rotationg orbit (Fig. 6(b)) and lower rotating orbit
(Fig. 6(c)) that corresponding to the region (b’) and the re-
gion (c’) in time series, respectively. From this figure, a
period of the chaotic subcircuit is determined by the peri-
odic force and according to its period. Additionally, the
upper rotating orbit and the lower rotating orbit are sym-
metric about the coordinate origin. From the above things,
the periodically forced chaotic circuits can be synchronized
at the in phase or at the opposite phase or be self-switching
at these in and opposite phase and it is decided by overlap-
ping of the upper rotating areas and lower rotating areas be-
tween the two chaotic subcircuits. It means, sampling syn-
chronization states every periods, the chaotic subcircuits
which the capacitors are governed by one force seem to be
synchronized at the in-phase or at the opposite-phase.

(a) (b) (c)

(b’) (c’)

Figure 6: Attractors, time series and rectangular wave re-
lating to parametrically excitation ε = 0.75, α = 0.80 and
ω = 1.10.
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Figure 7: Three types of synchronization by parametric ex-
citation.

4. Synchronization phenomena

In this section, we investigate synchronization phenom-
ena by carrying out computer calculations for two to five
subcircuits cases.

4.1. Two subcircuits case

In this subsection, we consider the case of N = 2,
namely only two van der Pol oscillators involving periodi-
cally forced capacitors are coupled by one resistor. In this
case, opposite-phase synchronization of two subcircuits is
observed. Figure 8 shows computer calculated results. As
shown in the figure, with γ increases, chaotic signals ob-
tained from two subcircuits become to be synchronized at
the opposite-phase. When γ = 0.01, two chaotic signals
seem to be completely synchronized at the opposite-phase.

(a)

(b)
Figure 8: Synchronization of two chaos. ε = 0.75, α =

0.80 and ω = 1.10. (a) γ = 0.001. (b) γ = 0.01.

4.2. Three subcircuits case

In this subsection, we consider the case of N = 3. In
this case, self-switching phenomena of in-phase synchro-
nization and opposite-phase synchronization can be ob-
served. Figure 9 shows the computer calculated result. In
Fig. 9, the upper figure, the middle figure and the lower
figure show attractors of the subcircuits, phase differences
between subcircuits and time series of the subcircuits, re-
spectively. As shown in time series of Fig. 9, the synchro-
nization states which subcircuits are synchronized at the
in-phase or opposite-phase are switching with time.

Three subcircuits generate the same shape of chaotic at-
tractors in Fig. 9 for long time observation. However, in
short time observation during synchronization states are
steady, the attractors are not the same. Two attractors
synchronized at the in-phase are smaller than the other

one. Figure 10 shows a computer calculated simulation for
observed attractors in some steady synchronization states
when initial values of two subcircuits are set as the same
values and initial values of the rest subcircuit is set as the
almost inverse about the coordinate origin. In the figure,
two attractors synchronized at the in-phase are also smaller
than the other one.

The coupled chaotic circuits used in this study are ex-
pected to minimize the current through the coupling resis-
tor. Additionally, subcircuits are synchronized at the in-
phase or the opposite-phase by the effect of parametric ex-
citation. Thus, the two attractors synchronized at the in-
phase are small for minimizing current through the cou-
pling resistor. However, chaos attractor does not have pe-
riodic orbit. Additionally, three subcircuits can not be syn-
chronized completely without the special case that all ini-
tial values are same. Thus sometimes two solutions of the
subcircuits synchronized at the opposite-phase approach
each other. In that time, synchronization states switch to
other synchronization state.

Figure 9: Self-switching phenomena of in-phase synchro-
nization and opposite-phase synchronization. ε = 0.75,
α = 0.80, ω = 1.10 and γ = 0.10.

Figure 10: Synchronization of three chaos when initial val-
ues of two subcircuits are set as same values. ε = 0.75,
α = 0.80, ω = 1.10 and γ = 0.10.

4.3. Four subcircuits case

In this subsection, we consider the case of N = 4. In
this case, two pairs of the opposite-phase synchronization
can be observed. Figure 11 shows the computer calcu-
lated results. In Fig. 11, (a) and (b) are obtained by us-
ing different initial values. In Fig. 11(a), two of four sub-
circuits are synchronized at the opposite phase. Also the
remain two subcircuits are synchronized at the opposite
phase. Then, two opposite-phase synchronizations switch
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between in and opposite phases. While, in Fig. 11(b),
the synchronization state between two opposite-phase syn-
chronizations is steady. For instance, subcircuits 2 and 3
seem to be synchronized at the in-phase. The synchroniza-
tion states of four coupled subcircuits become either the
above two state because of parametric excitation that all
subcircuits are synchronized at in-phase or opposite-phase
locally.

(a)

(b)
(1) (2) (3) (4)

Figure 11: Synchronization of four chaos. ε = 0.75, α =

0.80, ω = 1.10 and γ = 0.70. (1) x1 versus y1. (2) y1 versus
y2. (3) y2 versus y3. (4) y3 versus y4.

4.4. Five subcircuits case

In this subsection, we consider the case of N = 5. Fig-
ure 12 shows the computer calculated results. In this case,
two kinds of synchronization phenomena are observed.
The one is self-switching phenomena of all subcircuits (see
Fig. 12(a)). It can be observed when coupling intensity γ
is small. In Fig. 12(a), two subcircuits are synchronized
at the in-phase, while the remain three subcircuits are syn-
chronized at the in-phase. Then, the above two groups are
synchronized at the opposite-phase. Though, as time ad-
vances one of the subcircuits which belongs to the three
subcircuits group switch to another group. By the way, in-
creasing coupling intensity, another synchronization can be
observed as shown in Fig. 12(b). In Fig. 12 (b), subcir-
cuits 1 and 5 are synchronized at the in-phase and subcir-
cuits 2 and 4 are also synchronized at the in-phase. Then,
the above two pairs are synchronized at the opposite-phase.
Besides, synchronization states between remain subcircuit
and others switch from the in-phase to the opposite-phase
or vice versa with time.

5. Conclusions

In this study, we have investigated synchronization phe-
nomena in coupled van der Pol oscillators involving period-
ically forced capacitors. Firstly, we confirm effects of para-
metric excitation on synchronization that all subcircuits are
synchronized at in-phase or opposite-phase locally. Next,
we investigate behavior of parametric excitation in coupled
system. By carrying out computer calculations for two
to five subcircuits case, various interesting synchroniza-
tion phenomena of chaos are confirmed. In two subcircuits
case, opposite-phase synchronization is observed. In three
subcircuits case, self-switching of in-phase and opposite-
phase synchronization is observed. In four subcircuits case,

(a)

(b)
Figure 12: Synchronization of five chaos. ε = 0.75, α =

0.80 and ω = 1.10. (a) γ = 0.17. (a) γ = 0.50.

two pairs of opposite-phase synchronization is observed. In
five subcircuits case, two different types of synchronization
phenomena are observed. One of the synchronization phe-
nomena is self-switching of all subcircuits. Another one is
in and opposite phase synchronization and self-switching.
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