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Abstract—This paper presents several phase synchro-
nization modes of multi-state chaotic oscillators coupled
as a non-uniform network system. They have been known
several phase patters in several oscillators. Each chaotic
circuit which used in this paper can individually behave
both chaotic and two periodic oscillations in the same pa-
rameters asynchronously. In this study, such the coupled
chaotic circuits are proposed and classifications of phase
synchronization modes are investigated. In numerical sim-
ulation, many types of phase synchronization modes could
be confirmed.

1. Introduction

Nonlinear dynamics on coupled chaotic oscillators is
considerable interesting for a wide variety of systems in
several scientific fields and applications. Many types of
coupled systems have been widely studied in order to clar-
ify inherent features and many researchers have already
proposed and investigated them. Coupled chaotic systems
are as one of them which have several varieties of inter-
esting behavior with emergent properties. The dynamics of
chaotic multimode oscillations or chaotic itinerancy on sev-
eral coupled systems is still considerable interest from the
viewpoint of both natural scientific fields and several ap-
plications. They have been confirmed in several systems;
e.g., coupled van der Pol oscillators [1], coupled chaotic
systems [2], and so on. Phase synchronization and pattern
dynamics are also interesting for several engineering appli-
cations. On the other hand, many types of chaotic systems
and circuits have already been proposed and investigated in
detail. As interesting phenomena, there are famous chaotic
attractors such a double-scroll family [3], n-double scroll
[4]–[6] and scroll grid attractors [7]. If the active elements
including in the systems have complexity constructed by
compound some nonlinear elements, it can be easily con-
sidered that they yield several interesting features. The cir-
cuit which can individually behave both chaotic or peri-
odic oscillations in the same parameters had been shown
[8]. This type of circuit was called a Multi–State Chaotic
Oscillator/Circuit (abbr. MSCO/MSCC). Multimode oscil-
lations in coupled two or more multi–state chaotic circuits
had also been investigated [9]–[11]. Furthermore, we have
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Figure 1: Multi-state chaotic oscillator with piecewise
linear resistors NR and v-i characteristic of the diode D

been reported several phase synchronization on a uniform
network system [12]. However they have been treated only
a uniform network of a large scale system. It is very im-
portant to investigate a non-uniform system of the coupled
network in the sense of solving the several phenomena of
the natural world.

In this study, several phase patterns and multimode asyn-
chronous oscillations on the coupled MSCOs are investi-
gated. There is a typical three dimensional autonomous
chaotic system, which consists of three memory elements,
some diodes and designed negative resistors. We substitute
a symmetrical continuous segments piecewise linear resis-
tor for the negative active resistor including in the origi-
nal chaotic circuit. This proposed circuit can behave both
chaotic and periodic oscillations in the same parameters
when we supply with different initial conditions. Several
phase synchronization and classification of several phase
patterns in some MSCOs coupled as a non-uniform net-
work are investigated. It will be shown that several types
of phase synchronization modes can be confirmed asyn-
chronously, but all parameter settings of each circuit are
the same.

2. Model Description

The circuit shown in Fig. 1 is modified chaotic circuit
from a well–known three dimensional chaotic circuit [13].
The original circuit consists of three memory elements,
some diodes and designed negative resistors. It is well
known that it can behave as Rössler type chaotic motions.
We substitute a symmetrical piecewise linear resistor for
the negative active resistor including in the original chaotic
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Figure 2: Designed sawtooth nonlinear resistor NR in the
circuit. h(z): {p1, p2, p3, p4}={0.65, 0.55, 0.40, 0.30},
{m0, m1, m2, m3, m4} = {-1.0, 2.0, -1.0, 1.0, -0.15}

circuit. Further this circuit possesses another symmetrical
piecewise nonlinear resistor with respect to the origin.

An MSCO which is modified from the original circuit as
shown in Fig. 1 is a basic circuit as a subcomponent of a
coupled network model. In this study, we substitute a sym-
metrical continuous piecewise linear resistor for the nega-
tive active resistor including in the original chaotic circuit.
The piecewise linear resistor can be easily constructed by
combining some components in parallel [8].

By changing the following variables and parameters as
follows
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where g is a linear negative conductance value of NR if
we consider the negative resistor as an ideal element. Con-
sider that the part of negative resistance NR in Fig. 1 re-
places to the function h(z) represented by a voltage source
z as canonical form with 9-segments as shown in Fig. 2.
When we chose the threshold voltage Vd for a normalized
parameter, then the circuit equations can be normalized and
rewritten as follows.





ẋ = z

ẏ = β
{
z − f(y)

}

ż = −(x + y)− h(z)
(2)

where

f(y) =
1
2

{
|δy + 1| − |δy − 1|

}
(3)

and

h(z)=m0γ
∗z+

γ∗

2

{

K∑

k=0

(mk−mk+1)
{|z−pk+1|−|z+pk+1|

}} (4)

Figure 3: Attractor drawing onto the z − x plane for the
parameters β = 10.0, γ∗ = 0.78 and δ = 100

Figure 4: A coupled network model which each circuit is
connected to four neighbors

f(y) is a function of the current y and h(z) is a function
of the voltage z, respectively. The function h(z) which is
designed for several segment piecewise linear as symmetric
with respect to the origin. The parameter γ∗ is used for a
basic common value, hence the values mk(k = 0, 1, 2, · · ·,
K) mean magnitude of the slope to the ratio for γ∗.

Figure 3 also shows a typical chaotic attractor obtained
for the parameters β = 10.0, γ∗ = 0.78, δ = 100, with
piecewise linear characteristics realized by breakpoints p1

= 0.65, p2 = 0.55, p3 = 0.40, p4 = 0.30, slopes m0 = −1.0,
m1 = 2.0, m2 = −1.0, m3 = 1.0 and m4 = −0.15. We
can confirm that chaotic and two periodic attractors coexist
in the circuit. This means coexistence of both chaos and
two different size of limit cycles in the same parameters.

3. Simulation for coupled MSCOs

In this section, the model of MSCOs coupled by induc-
tors as a non-uniform network system are investigated. For
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example of a coupled network, now let us consider the cou-
pled MSCOs model which combined number of N × M
chaotic circuits are connected by inductors to neighbors’
circuit as a network structure shown in Fig. 4. In this study,
the coupling strength of the network is a non-uniform that
it is different of the coupling strength between chaotic os-
cillators in the previous study [12]. The circuit index is
defined as (i, j). It is note that every chaotic circuit is com-
posed by all the same parameters and connected to four
neighbors circuits. The circuit on the edge of this coupled
network is connected to an opposite side circuit, it seems
like a distribution on surface of the torus structure. By the
similar way described before, the circuit equations of cou-
pled MSCOs can be normalized by the variables (1) with
a new basic parameter α = L1/L0. Here, as we consider
a non-uniform network, we can change the parameter α to
α∗(i,j). Therefore, the whole circuit equations can be rewrit-
ten as follows.





ẋ(i,j) = z(i,j)

ẏ(i,j) = β
(
z(i,j) − f(y(i,j))

)

ż(i,j) =
(
αw

(i,j)(x(i,j−1) − x(i,j))

+αn
(i,j)(x(i+1,j) − x(i,j))

+αe
(i,j)(x(i,j+1) − x(i,j))

+αs
(i,j)(x(i−1,j) − x(i,j))

)

−(x(i,j) + y(i,j))− h(z(i,j))

(5)

where functions f(y) and h(z) are similar to (3) and (4),
respectively. The parameter α∗(i,j) is the coupling strength
of between both oscillators. The symbol ∗ means a target
which corresponds to left(=w), upper(=n), right(=e) and
lower(=s), respectively.

We show some computer calculation results by using 4-
th order Runge–Kutta method with time step size ∆t =
0.001 for the circuit equations in some cases of (N,M)
as follows. The parameters of each circuit are the same in
the Sec. 2. The initial conditions of each circuit are given
at random. Figure 5 shows some typical results obtained
from computer simulation in some cases of coupled num-
ber (N, M). Figure shows both uniform and non-uniform
network of coupling strength. The matrices as shown in
Fig. 6 also show all parameters of coupling strength α
which was made to be added a uniform random distributed
number of a section [−0.3, 0.3].

We can confirm complex and chaotic synchronization
phenomena on the coupled system. Because it cannot
be shown all simulation results, we can several types of
complex and interesting synchronization phenomena in
the same parameters, i.e., in-phase synchronization, anti-
phase synchronization, clustering of phase synchroniza-
tion, phase locking and other types. Several phase syn-
chronization modes are coexisting in spite of the same pa-
rameters. In the camera-ready paper, we will show that
stochastic analysis for these several synchronization modes
are investigated.

4. Conclusions

In this study, we have investigated several synchroniza-
tion modes in coupled multi-state chaotic oscillators on
a non-uniform network system. Coexistence of several
types oscillation modes have been confirmed in the coupled
MSCOs. Several interesting chaotic phenomena of spatio-
temporal behavior have been observed in the coupled net-
work system. On a large scale of coupled chaotic oscilla-
tors such a small-world and a scale-free network, we con-
sider that several types of complex behavior are expected
to yield novel applications and inherent emergent proper-
ties in the natural systems.
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(a) (b)

(c) (d)
Figure 5: Examples of simulation results obtained from coupled MSCOs for α = 0.50 (in case of the uniform network),
β = 10.0, γ∗ = 0.78, δ = 100. h(z): {p1, p2, p3, p4}={0.65, 0.55, 0.40, 0.30}, {m0, m1, m2, m3, m4} = {-1.0, 2.0, -1.0,
1.0, -0.15}. Size (N,M) of the network: (a) uniform network of (3,3), (b) non-uniform network of (3,3), (c) uniform
network of (4,4) and (d) non-uniform network of (4,4) with waveform of each oscillator




0.303 0.748 0.346
(1, 1) 0.415 (1, 2) 0.705 (1, 3) 0.222
0.527 0.485 0.777
(2, 1) 0.608 (2, 2) 0.227 (2, 3) 0.683
0.423 0.711 0.787
(3, 1) 0.343 (3, 2) 0.765 (3, 3) 0.457







0.34 0.38 0.60 0.37
(1, 1) 0.49 (1, 2) 0.69 (1, 3) 0.52 (1, 4) 0.64
0.76 0.62 0.54 0.50
(2, 1) 0.42 (2, 2) 0.54 (2, 3) 0.73 (2, 4) 0.46
0.52 0.75 0.800 0.78
(3, 1) 0.59 (3, 2) 0.60 (3, 3) 0.45 (3, 4) 0.77
0.70 0.37 0.53 0.46
(4, 1) 0.42 (4, 2) 0.20 (4, 3) 0.73 (4, 4) 0.40




(a) (b)
Figure 6: Matrices of the coupling strength for (a) 3×3 and (b) 4×4 in the simulation results of Figure 5
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