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Abstract—We investigate synchronization phe-
nomena on coupled oscillators system that van der
Pol oscillators are coupled by inductors as a lattice.
In the lattice oscillators, the phase-inversion waves,
which are phenomena changing phase states between
adjacent oscillators from in-phase synchronous to anti-
phase synchronous or from anti-phase synchronous to
in-phase synchronous and exists in steady state, were
discovered. This paper clarifies reflection mechanisms
of a phase-inversion wave at the edge by using instan-
taneous frequencies of each oscillator and phase differ-
ences between adjacent oscillators in the lattice shape
system.
1. Introduction

Many investigations and analyses for synchronous
systems are carried out up to now[1]–[4]. A lot of
kinds of synchronization phenomena exists anywhere
and anytime. For example, there are synchronous
between sea waves and ship motion, earthquake and
buildings, and so on. Therefore, synchronization phe-
nomena may bring on disaster. We think that these
problems of the natural world may be clarified by an-
alyzing many synchronization phenomena. Moreover,
we think that the time-series data of natural world
become to be able to predict by using a synchroniza-
tion system. By investigating the synchronization phe-
nomena of coupled oscillators, we believe that various
synchronization phenomena can be modeled using the
electrical circuits. We observe the various phenom-
ena on coupled oscillators system, and analyze these
mechanisms[5].

In our previous study, we investigated phenomena in
systems that many van der Pol oscillators were coupled
as a lattice shape. The coupling parameter and the
nonlinearity of the system were changed, and the exist-
ing region of phase-inversion waves were made clear[6].
Moreover, we developed the prediction system of the
time-series data using the lattice oscillators. The chaos
time-series data of Inaba’s circuit and Chua’s circuit
were predicted by this system[7].

In this paper, we analyzes two kinds of reflection
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Figure 1: Circuit Model.

phenomena of the phase-inversion waves using instan-
taneous frequencies of each oscillator and phase differ-
ences between adjacent oscillators at an edge in the
lattice shape system. The mechanisms of each reflec-
tion phenomenon are made clear.

2. Circuit model
A lot of van der Pol oscillators are coupled by induc-

tors L0 as a lattice(see Fig. 1). The number of column
of the system is assumed as M . The number of row of
the system is assumed as N . The name of each oscil-
lator are assumed to be OSC(k,l). A voltage of each
oscillator is named v(k,l), and a current of inductor of
each oscillator is named i(k,l)(see Fig. 1). The circuit
equations of the circuit model are normalized by Eq.
(1), and the normalized circuit equations are shown as
Eqs. (2)–(6).

i(k,l) =
√

Cg1
3Lg3

x(k,l), v(k,l) =
√

g1
3g3

y(k,l),

t =
√

LCτ, d
dτ = “ · ”, α = L

L0
, ε = g1

√
L
C .

(1)

[Corner–top (left and right)]
dx(1,a)

dτ = y(1,a), (2)
dy(1,a)

dτ = −x(1,a) + α(x(1,b) + x(2,a) − 2x(1,a))

+ ε(y(1,a) − 1
3
y3
(1,a)),

left:a = 1 and b = 2. right:a = N and b = N − 1.
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[Corner–bottom (left and right)]
dx(M,a)

dτ = y(M,a), (3)

dy(M,a)

dτ = −x(M,a) + α(x(M−1,a) + x(M,b)

− 2x(M,a)) + ε(y(M,a) − 1
3y3

(M,a)),

left:a = 1 and b = 2. right:a = N and b = N − 1.
[Center]

dx(k,l)

dτ = y(k,l), (4)

dy(k,l)

dτ = −x(k,l) + α(x(k+1,l) + x(k−1,l) + x(k,l+1)

+ x(k,l−1) − 4x(k,l)) + ε(y(k,l) − 1
3y3

(k,l)),

1 < k < M . 1 < l < N .
[Edge–top and bottom]

dx(a,l)

dτ = y(a,l), (5)

dy(a,l)

dτ = −x(a,l) + α(x(a,l−1) + x(a,l+1) + x(b,l)

− 3x(a,l)) + ε(y(a,l) − 1
3y3

(a,l)),

top:a = 1 and b = 2. bottom:a = M and b = M − 1.
both:1 < l < N .
[Edge–left and right]

dx(k,a)

dτ = y(k,a), (6)

dy(k,a)

dτ = −x(k,a) + α(x(k−1,a) + x(k+1,a) + x(k,b)

− 3x(k,a)) + ε(y(k,a) − 1
3y3

(k,a)),

left:a = 1 and b = 2. right:a = N and b = N − 1.
both:1 < k < M .

The α is a coupling parameter of each oscillator. The
ε is a nonlinearity of each oscillator. This system is
simulated by the fourth order Runge-Kutta methods
using Eqs. (2)-(6).

3. Reflection mechanisms at an edge
The phase-inversion waves shows in Fig.2. The re-

flection mechanisms at an edge are made clear using
instantaneous frequency of each oscillator and phase
difference between adjacent oscillators. The coupling
parameter is fixed as α = 0.01, and nonlinearity is
fixed ε = 0.050. An equation of the instantaneous
frequency of OSC(k, l) is calculated as follows. The
instantaneous frequency is named f(k,l)(a) where “α”
expresses the number of times of the peak value of
the voltage. Time of a peak value of the voltage of
OSC(k, l) is assumed as τ(k,l)(a)(see Fig.3). Similarly,
τ(k+1,l)(a) and τ(k,l+1)(a) are decided. The f(k,l)(a) is
obtained by Eq.(7).

f(k,l)(a) =
1

τ(k,l)(a) − τ(k,l)(a − 1)
. (7)

α β

Figure 2: The phase-inversion waves on 20×20
oscillators(α:an attractor of each oscillator(current
vs. voltage), β:a sum of voltages of adjacent oscil-
lators(sum of voltage vs. time)).

Three frequencies are observed in steady states. In
this system, the synchronous for vertical direction and
horizontal direction needs to be considered, because
this system is 2 dimensional array. Therefore, three
type synchronizations are observed as follows:
1. OSC(k, l)–OSC(k, l +1), OSC(k, l)–OSC(k, l−1),
OSC(k, l)–OSC(k + 1, l), and OSC(k, l)–OSC(k − 1,
l): in-phase synchronous.
2. {OSC(k, l)–OSC(k, l + 1) and OSC(k, l)–OSC(k,
l − 1): in-phase synchronous. OSC(k, l)–OSC(k + 1,
l), and OSC(k, l)–OSC(k − 1, l): anti-phase syn-
chronous.} or {OSC(k, l)–OSC(k, l + 1), and OSC(k,
l)–OSC(k, l− 1): anti-phase synchronous. OSC(k, l)–
OSC(k + 1, l), and OSC(k, l)–OSC(k + 1, l): in-phase
synchronous.}
3. OSC(k, l)–OSC(k, l +1), OSC(k, l)–OSC(k, l−1),
OSC(k, l)–OSC(k + 1, l), and OSC(k, l)–OSC(k + 1,
l): anti-phase synchronous.
In this paper, we call the 1st type synchronous “in-
and-in-phase synchronous.” The 2nd type synchro-
nization is called “in-and-anti-phase synchronous.”
The 3rd type synchronization is called “anti-and-anti-
phase synchronous.” An each instantaneous frequency
of OSC(k, l) is obtained in each synchronous type. In
the 1st situational synchronous, f(k,l) is fin−in. In the
2nd situational synchronous, f(k,l) is fin−anti. In the
3rd situational synchronous, f(k,l) is fanti−anti.

The phase difference is calculated as follows. A
phase difference between OSC(k, l) and OSC(k + 1, l)
and a phase difference between OSC(k, l) and OSC(k,
l + 1) are calculated. The phase differences are as-
sumed as Φ(k,l)(k+1,l)(a) and Φ(k,l)(k,l+1)(a) respec-
tively.The Φ(k,l)(k+1,l)(a) and Φ(k,l)(k,l+1)(a) are ob-
tained by Eq.(8).

Φ(k,l)(k+1,l)(a) =
τ(k,l)(a) − τ(k+1,l)(a)

τ(k,l)(a) − τ(k,l)(a − 1)
× 180 [degree]

Φ(k,l)(k,l+1)(a) =
τ(k,l)(a) − τ(k,l+1)(a)

τ(k,l)(a) − τ(k,l)(a − 1)
× 180 [degree].

(8)

τ(k, l)(a)V

V τ(k+1, l)(a)

OSC(k, l)

OSC(k+1, l)

Time

Time

aa-2a-1 a+1 a+2 a+3

aa-2a-1 a+1 a+2 a+3

Figure 3: The detection method of frequencies and the
phase differences.

- 176 -



Table 1: Reflection mechnism of a phase-inversion
wave at an edge in in-and-anti phase synchronous(see
Fig.4).

no. Mechanism

0 The phase state between adjacent oscillators of the

horizontal direction is the in-phase synchronous.

A phase-inversion wave, which propagates from

OSC(9,48) in in-phase synchronous, arrives at

OSC(2,48).

1 f(2,48) starts to increase from fin−in toward fin−anti

by the phase-inversion wave. f(2,48) can not arrive

at fanti−anti because phase states of horizontal di-

rections of these oscillators are in-phase synchronous.

2 Φ(1,48)(2,48) starts to increase toward 180 degrees from

0 because f(2,48) increases toward fin−anti.

3 f(1,48) starts to increase from fin−in toward fin−anti

because Φ(1,48)(2,48) increases toward 180 degrees.

4 Φ(0,48)(1,48) starts to increase toward 180 degrees from

0, because f(1,48) increases toward fin−anti.

5 f(0,48) starts to increase toward fin−anti because

Φ(0,48)(1,48) increases toward 180 degrees.

6 Φ(1,48)(2,48) arrives around 180 degrees, and is sta-

blilized as the anti-phase synchronous.

7 f(1,48) arrives around fin−anti.

8 f(1,48) arrives at fin−anti, and Φ(0,48)(1,48) becomes

around 180 degrees. However, in these parame-

ters, OSC(0,48) can not stablilize for vertical direc-

tion. Therefore, f(0,48) becomes middle of fin−in and

fin−anti, and decreases to fin−in again.

9 f(1,48) starts to decrease from fin−anti toward fin−in

because Φ(0,48)(1,48) increases toward 360 degrees.

10 Φ(1,48)(2,48) starts to increase toward 360 degrees from

180 because f(1,48) decreases toward fin−in.

11 f(0,48) arrives around fin−in, and becomes stable.

12 Φ(0,48)(1,48) arrives around 360 degrees and becomes

stable.

13 Φ(0,48)(1,48) arrives around 360 degrees, and f(1,48)

arrives around fin−in and becomes stable.

14 f(1,48) arrives around fin−in, and Φ(1,48)(2,48) arrives

around 360 degrees and becomes stable.

The phase-inversion waves are generated by the fol-
lowing method. 1. Voltages and currents of all oscilla-
tors are set as same value, in other words all oscillators
are set as in-phase synchronization. 2. The signs of
x(k,l) and y(k,l) of arbitrary oscillators are inverted in-
stantaneously.

3.1. Reflection of phase-inversion waves in in-
and-in-phase synchronous

We can observe that a phase-inversion wave for a
vertical direction in each column propagate in in-and-
anti-phase synchronous. A mechanism is shown as
Tab.1. A mechanism of a phase-inversion wave for
a horizontal direction can be explained same method.
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Figure 4: Transitions of phase differences and frequen-
cies by reflecting a phase-inversion wave in in-and-in-
phase synchronous.

In Fig.4(a), the vertical axis is the instantaneous fre-
quency, and the horizontal axis is time. In Fig.4(b),
the vertical axis expresses the phase difference and the
horizontal axis expresses time.

3.2. Reflection of phase-inversion waves in in-
and-anti-phase synchronous

We can observe that a phase-inversion wave for
a vertical direction in each column propagate in in-
and-anti-phase synchronous. A mechanism is shown
as Tab.2. A mechanism of a phase-inversion wave
for other edges can be explained same method. In
Fig.5(a), the vertical axis is the instantaneous fre-
quency, and the horizontal axis is time. In Fig.5(b),
the vertical axis expresses the phase difference and the
horizontal axis expresses time.
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Figure 5: Transitions of phase differences and frequen-
cies by reflecting a phase-inversion wave in in-and-anti-
phase synchronous at an edge.
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Table 2: Reflection of a phase-inversion wave at an
edge in in-and-in-phase synchronous(see Fig.5).

no. Mechanism

0 The phase state between adjacent oscillators of the

horizontal direction is the anti-phase synchronous.

A phase-inversion wave, which propagates from

OSC(9,8) in anti-phase synchronous, arrives at

OSC(2,8).

1 f(2,8) starts to increase from fin−anti toward

fanti−anti by the phase-inversion wave.

2 Φ(1,8)(2,8) starts to increase toward 180 degrees from

0, because f(2,8) increases toward fanti−anti.

3 f(1,8) starts to increase from fin−anti toward

fanti−anti because Φ(1,8)(2,8) increases toward 180 de-

grees.

4 Φ(0,8)(1,8) starts to increase toward 180 degrees from

0, because f(1,8) increases toward fanti−anti.

5 Φ(1,8)(2,8) arrives around 180 degrees, and it stabilizes

the anti phase synchronous.

6 f(1,8) arrives fanti−anti because Φ(1,8)(2,8) arrived

180 degrees.

7 Φ(0,8)(1,8) is not steady in 180 degrees, and Φ(0,8)(1,8)

increases toward 360 degrees,because f(1,8) arrived at

fanti−anti. f(0,8) can not arrive at fanti−anti. f(0,8)

arrives middle fanti−anti and fin−anti, and decrease

to fin−anti again.

7.1 Φ(0,8)(1,8) keeps passing 180 degrees, and it increasing

toward 360 degrees.

8 Φ(0,8)(1,8) does not stop 180 degrees, and Φ(0,8)(1,8)

continues to change to 360 degrees. Therefore, f(1,8)

starts to decrease from fanti−anti to fin−anti.

9 f(2,8) starts to decrease from fanti−anti toward

fin−anti because Φ(1,8)(2,8) increases toward 360 de-

grees from 180degrees.

10 f(0,8) arrives around fin−anti.

11 Φ(0,8)(1,8) arrives 360 degrees because f(0,8) arrived

fin−anti.

12 f(1,8) arrives fin−anti because Φ(0,8)(1,8) arrived 360

degrees.

13 Φ(1,8)(2,8) arrives 360 degrees because f(1,8) arrived

fin−anti.

14 f(2,8) arrives fin−anti because Φ(1,8)(2,8) arrived 360

degrees.

4. Conclusion

We can observe reflecting phase-inversion waves at
the edge in lattice oscillators. The reflections can be
observed at the edge of lattice oscillators in in-and-
in phase synchronous and in in-and-anti phase syn-
chronous. These mechanisms of reflection phenomena
were made clear by phase differences between adja-
cent oscillators and instantaneous frequencies of each

oscillator.
At the corner of our system, a reflection of the phase-

inversion wave can be observed. We should make clear
the mechanism of the reflection.
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