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Abstract

Synchronization is common phenomenon in the field of nat-
ural science. It should be noted that mutual synchroniza-
tion phenomenon of oscillators gives various phase states and
there have been many investigations on these phenomenon.
In previous study, we confirmed the basic synchronization of
three oscillators with the same natural frequencies coupled
by a resonator. In this study, we investigate oscillation fre-
quency of resonator-coupling three oscillators to carried out
the sychronization phenomenon in detail.

1. Introduction

In our surroundings, there are a lot of synchronous phe-
nomena. It is not unusual at all. For example, synchronus lu-
minescence of firefly group is widely known for synchronous
phenomena. When you observe the firefly group, the interval
of firefly luminescence is gradually becomes the equal inter-
val. However, this mechanism has not been clarified in detail.
In a familiar point, the activity of our brain is a synchronous
phenomenon. We feel, think about something, at the moment,
the hundreds million of neuron of the brain synchronizes and
exchanges pulses. In the others, cell of heart producing pulses
at equal intervals and revolution of the moon etc. are good ex-
amples in which a synchronous phenomenon is comprehen-
sible. Similarly, synchronization is common phenomenon in
the field of natural science. However, it is defficult to clari-
fied the mechanism of synchronous phenomena in natural sci-
ence. We believe that investigating simpler synchronous phe-
nomena (ex.synchronous oscillators) is the key that arrives at
synchronous of firefly group and more complex synchronous
phenomenon.

There have been many investigations of the mutual syn-
chronization of oscillators ([1]-[6] and therein). Moro and
one of the authors have confirmed thatN oscillators with
same natural frequencies mutually coupled by one resistor
give N-phase oscillations. Their system can take (N − 1)!
phase states, because of their system tends to minimize the
current through the coupling resistor [7][8]. They thought
that these coupling structure and huge number of steady states

(for example, when their system take 479,001,600 steady
states whenN = 13.), would be structural element of cel-
lular neural network or may be used as an extremely large
memory.

In our previous stady, we observed synchronization of three
oscillators coupled by a resonator. Resonator was consisted
of parallel circuit of a capacitor and an inductor. We ob-
served in-phase oscillation and two types of three-phase oscil-
lations from the coupled oscillators by using the Runge-Kutta
method [9].

In this study, we investigate frequency characteristics of the
synchronized oscillations and distorted waveforms by using
SPICE in detail.

2. Circuit Model
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Figure 1:Circuit model.

The circuit model is shown in Fig. 1. Three oscillators
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with the same natural frequencies are mutually coupled by a
resonator (LCCC circuit). The circuit equations are described
as Eq. (1).



C
dvk

dt
= −ik − ir (vk)

L
dik
dt

= vk − vCc (k = 1,2, 3)

Cc
dvCc

dt
=
∑3

j=1 i j − iLc
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diLc

dt
= vCc

(1)

whereir (vk) indicates thev− i characteristics of the nonlinear

GND

3

2

1

Ωk1

Ωk1

r

Figure 2:Nonlinear resistor.

resistor, which is approximated by Eq. (2).

ir (vk) = −g1vk + g3v3
k. (2)

For circuit experiments, the nonlinear resistor is realized as
shown in Fig. 2. Note that whenr is small, the nonlinearity
is strong. By using the following variables and parameters,



vk =

√
g1

g3
xk, ik =

√
Cg1

Lg3
yk,

vCc =

√
g1

g3
X, iLc =

√
Cg1

Lg3
Y,

t =
√

LC τ, “ · ” = d
dτ
,
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√
L
C

g1, β =
C
Cc
, γ =

L
Lc
,

(3)

the normalized circuit equations are given as follows.

ẋk = −yk + ε(xk − x3
k)

ẏk = xk − X (k = 1,2,3)

Ẋ = β
(∑3

j=1 y j − Y
)

Ẏ = γX

(4)

3. Basic Synchronization Phenomena

Basic synchronization phenomena are shown in Fig. 3.
We can observe three patterns of oscillations for the same
parameter; in-phase synchronization and two types of three-
phase synchronizations. The observed synchronous patterns
depend on the initial states. Also the circuit experimental re-
sults show similar phenomena to the numerical results.
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Figure 3: (a)Time waveform of in-phase oscillation and
two types of three-phase oscillations (numerical results).
ε=β=γ=1.0. (b)Time waveform of in-phase oscillation
and two types of three-phase oscillations (experimental re-
sults). L=Lc=10mH,C=Cc=68nF andr=250Ω. Horizontal
scale: 50µs/div. and Vertical scale: 1.0V/div.

To investigate the synchronization phenomenon when the
parameters of the coupling resonator are changed, one of the
parameters are fixed to 1.0, and the other parameter (β or
γ) is changed. First, the parameterβ is fixed to 1, and the
parameterγ is changed from 0.3 to 2.7. For any values of
γ, the three patterns of synchronization; in-phase oscillation
and two types of three-phase oscillations, are able to be con-
firmed. We should note that the oscillation frequency of the
three-phase oscillations is almost the same for differentγ. On
the other hand, the frequency of the in-phase oscillation in-
creases asγ increases.
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Secondly, the parameterγ is fixed to 1, and the parameterβ
is changed from 0.3 to 2.7. We can observe the three patterns
of synchronization as well as the previous case. However, in
this case, whenβ was changed, the oscillation frequency of
either in-phase oscillation or three-phase oscillation does not
change.
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Figure 4: The change of the frequency for changing the
parameters. (a)The frequency of the in-phase oscillation.
(b)The frequency of the three-phase oscillation. Horizontal
axis is the changeβ or γ.

4. Frequency Analysis by SPICE

Because of the detailed oscillation frequency is not ob-
tained by the Runge-Kutta method, we analyzed the oscil-
lation frequency by using SPICE. We investigated the change
in the oscillation frequency as changingβ or γ. The change
in oscillation frequency of the in-phase oscillation and the
three-phase oscillation are shown in Fig. 4. Horizontal axis
is the changingβ or γ. Whenβ is changed,γ is fixed to 1.0.
Also, Whenγ is expanded,β is fixed to 1.0. The oscillation
frequency of the in-phase oscillation increases asγ increases.
On the other hands, there are no remarkable change in other
oscillation frequencies. The value ofLc is more strongly in-

fluenced to the oscillation frequencies than the value ofCc.
We think the reason of this result is thatL of the oscillator is
connected to the resonator.

5. Analysis of distorted waveforms

Also, we observed distorted waveforms of synchroniza-
tions for some parameter values in SPICE. The distorted
oscillations obtained by using the Runge-Kutta method are
shown in Fig. 5 for the reference. The distorted oscillations
obtained by using SPICE are shown in Figs. 6 and 7. The fre-
quency characteristics of the distorted oscillations obtained
by using FFT of SPICE are shown in Figs. 8 and 9. We con-
firmed that the distortion comes from the third-order harmon-
ics of the oscillations.
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Figure 5: Distorted oscillation by Runge-Kutta method for
ε=γ=1.0. (a)β=0.3. (b)β=2.1.

6. Conclusions

In this study, we have investigated frequency characteris-
tics of the synchronized oscillations in three oscillators cou-
pled by a resonator by using SPICE. Further, detailed analysis
of the distorted waveforms was carried out.

Our future work is to investigate synchronous oscillators
with various circuits in more detail.
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Figure 6: The distorted in-phase oscillation by SPICE for
ε=γ=1.0,β=2.1.

Figure 7:The distorted three-phase oscillation by SPICE for
ε=γ=1.0,β=0.3.
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