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Abstract

Biological neurons are able to exhibit spiking and bursting
behavior. The interesting phenomena is ensembles of neu-
rons by synchronization. In this study, we investigate com-
plex patterns observed in coupled 2-dimensional maps based
on neuronal model with time-varying coupling.

1. Introduction

Generally, complex dynamical phenomena can be ob-
served in networks formed by many elements with nonlinear-
ity. Coupled Map Lattice (CML) has proposed by Kaneko
and Bunimovich [1]-[5], to use as general models for the
complex high-dimensional dynamics, such as biological sys-
tems, networks in DNA, economic activities, neural net-
works, and evolutions. We can observed the spatio-temporal
patterns in CML. It is very important to make clear this mech-
anism of the spatio-temporal patterns for understanding com-
plex patterns observed in natural science. Usually, the chaotic
maps are used for CML and many interesting spatio-temporal
patterns were observed.

Recently, a discrete map for spiking-bursting neural be-
havior was proposed by Rulkov [6], [7]. Rulkov map (see.
Fig. 1) in the form of a two-dimensional map can be useful
for understanding the dynamical mechanism of oscillators in
the large scale networks. And Rulkov map produce spiking-
bursting behavior like real neurons. In this study, we consider
that Rulkov maps are used for CML. Furthermore, we assume
that the coupling strength of between the neurons is not sim-
ple and the coupling strength plays important role for whole
system. We consider that the coupling strength is changed
with time. Time-varying coupling is realized by switching the
positive and negative values, periodically. In this study,we
investigate synchronization phenomena observed in two cou-
pled Rulkov maps with time-varying coupling, and demon-
strate complex patterns observed in a chain of maps.
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Figure 1: Rulkov map. The dashed line illustrates a super-
stable cyclePk. The stable and unstable fixed points of the
map are indicated byxps andxpu, respectively.

2. Two Coupled Rulkov Maps

Consider the two coupled Rulkov maps [6] as following
equation.

xi,n+1 = f (xi,n, yi,n + βi,n), (1)

yi,n+1 = yi,n − µ(xi,n + 1)+ µσi + µσi,n,

f (xn, y) =


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α/(1− xn) + y, xn 6 0

α + y, 0 < xn < α + y and xn 6 0

−1, xn > α + y or xn−1 > 0,
(2)

wherex andy are the fast and slow dynamical variables, re-
spectively. The coupling between the cells is provided by the
current flowing from one cell to the other. This coupling is
modeled by

βi,n = gβe(x j,n − xi,n), (3)

σi,n = gσe(x j,n − xi,n),
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whereg denotes the coupling strength. In the numerical sim-
ulations the values of the coefficients are set to be equal:
βe = 1.0 andσe = 1.0. The other parameters has the follow-
ing values:µ = 0.001,α = 5.0 andσ = 0.24. The coupling
between the maps is symmetrical, i.e.,g ji = gi j = g.

2.1. Normal Coupling

First, we investigate basic synchronization phenomena
when the normal coupling without changing the value of cou-
pling is used. When two Rulkov maps are coupled with posi-
tive valueg = 0.029, two bursting waves are synchronized at
the in-phase as shown in Fig.2. While, introduction of neg-
ative couplingg = −0.029, in this regime of synchronization
shows anti-phase (see. Fig.3). For comparison between the
in-phase and the anti-phase states, the oscillation frequency
of the anti-phase is faster than the in-phase state.

When three maps are coupled with negative coupling, we
can observe the three-phase synchronization as shown in
Fig. 4.
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Figure 2: In-phase synchronization (g = 0.029).

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  500  1000  1500  2000
n

X2,n

X1,n

Figure 3: Anti-phase synchronization (g = −0.029).
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Figure 4: Three-phase synchronization (g = −0.029).

2.2. Time-Varying Coupling

Figure5 shows the characteristics of the time-varying cou-
pling. The value of the time-varying coupling switches pos-
itive and negative periodically andp denotes the switching
period.
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Figure 5: Characteristics of time-varying coupling.

By using the time-varying coupling, we observe the syn-
chronization switching between in-phase and anti-phase in-
dependence on the coupling strength (when the switching pe-
riod is set top = 1000, p = 200) as shown in Figs.6 and
7. Upper figure shows the two wave forms generated from
two coupled Rulkov maps and lower figure shows the char-
acteristics of the time-varying coupling. When the coupling
strength has positive value, the two maps are synchronized in
in-phase. While, in the case of that the coupling value is neg-
ative, two maps are synchronized in anti-phase. By switch-
ing of the value of the time-varying coupling, synchronization
states also switches between the in-phase and the anti-phase
states.

Next we calculated the frequency of bursting part when the
iteration time is set ton = 1000000 as shown in Fig.8. From
this result we can confirm that in the case of normal positive
coupling, only three peaks exist. In contrast, there are many
peaks by using negative coupling. When we use the time-
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Figure 6: Switching of in-phase and anti-phase synchroniza-
tion (p = 1000).
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Figure 7: Switching of in-phase and anti-phase synchroniza-
tion (p = 200).

varying coupling, several peaks of bursting part are observed.
Figure9 show the simulation result of the average length of
bursting part by changing period of the time-varying cou-
pling. We confirmed two peaks of the period of time-varying
coupling in this figure. We confirm that the average length of
bursting part decrease, when the period of time-varying cou-
pling becomes large.

3. Synchronization in a Chain of Coupled Maps

In this section, we investigate synchronization in a chain of
coupled maps:

xi,n+1 = f (xi,nxi,n−1, yi,n)

+
1
2

g(xi+1,n − 2xi,n + xi−1,n),

yi,n+1 = yi,n − µ(xi,n + 1)+ µσi

+µ
1
2

g(xi+1,n − 2xi,n + xi−1,n),

i = 1, ...,N, (4)
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Figure 8: Histogram of length of bursting part.
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Figure 9: Average length of bursting part.

wherex andy are the fast and slow dynamical variables, re-
spectively. µ = 10−3 andσi are the parameters of the indi-
vidual map andg is the coupling. The functionf () has the
following form:

f (xn, yn) =
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

α/(1− xn) + yn, xn 6 0,

α + yn, 0 < xn < α + yn

and xn−1 6 0,

−1, xn > α + yn or xn−1 > 0,
(5)

This model is a modification of the model presented in
Sec. 2. In this simulations, we takeα = 3.5 andσi is set
for randomly distributed in the interval [0.15:0.16]. The sim-
ulation results of the space-time plot by changing period of
time-varying coupling are shown in Figs.10-12. The hori-
zontal axis is iteration timen and the vertical axis is spacei.
When the time varying coupling is set to positive, the wave
propagation can be observed. While, in the case of negative
coupling, we confirm the random patterns are produced. By
decreasing the period of time-varying coupling, the lengthof
each region of wave propagation and random pattern becomes
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shorter. Figure13 shows the simulation result of the space-
time plot when the coupling is set tog = ±0.4 and the period
of time-varying coupling isp = 100.

We consider that the interesting complex patterns can be
observed by switching coupling strength.
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Figure 10: Space-time plots ofxi. (g = ±0.2, p = 500).

 0  100  200  300  400  500  600  700  800  900  1000

n (time)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

i (
sp

ac
e)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

Figure 11: Space-time plots ofxi. (g = ±0.2, p = 100).

4. Conclusions

In this study, we have investigated synchronization phe-
nomena observed in two coupled Rulkov maps with time-
varying coupling, and demonstrated complex patterns ob-
served in a chain of maps. In the future works, we investigate
synchronization of maps by the other coupling methods such
as the chemical and diffusion coupling.
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Figure 12: Space-time plots ofxi. (g = ±0.2, p = 20).
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Figure 13: Space-time plots ofxi. (g = ±0.4, p = 100).
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