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Abstract

This study proposes a Particle Swarm Optimization with Map
Structure (PSOMS). All particles of PSOMS are connected to
adjacent particles by neighborhood relation, which dictates
the topology, of the 2-dimensional map. Each particle is up-
dated depending on the neighborhood distance between it and
a winner, whose function value is best among all particles.
Simulation results show the searching efficiency of PSOMS.

1. Introduction

Particle Swarm Optimization (PSO) [1] is an evolutionary
algorithm to simulate the movement of flocks of birds. Due
to the simple concept, easy implementation, and quick con-
vergence, PSO has attracted much attention and is used to
wide applications in different fields in recent years. However,
PSO greatly depends on its parameters and converge prema-
turely in case of solving complex problems which have local
optima. Furthermore, in PSO algorithm, there are no spe-
cial relationships between particles. Each particle position is
updated according to its personal best position and the best
particle position among the all particles, and their weights
are determined at random in every generation. On the other
side, in the real world, various personal relationships exist,
such as the hierarchical relationship, the trust relationships,
the parents-child relationship and so on.

Various topological neighborhoods have been considered
by researches [2]–[6]. They have applied ring neighborhood,
the von Neumann neighborhood, or some other topological
neighborhoods. However, the parameters are increased by
using fourth term for considering the neighboring best po-
sition when updating the velocity. Moreover, their methods
are complex algorithms although the one of advantages of the
standard PSO is the simple concept.

In this study, we propose a new Particle Swarm Optimiza-
tion with Map Structure (PSOMS) which is the simple algo-
rithm as the standard PSO. All particles of PSOMS are ar-
ranged in 2-dimensional grid and are connected to adjacent
particles by neighborhood relation which dictates the topol-
ogy of the grid. In every generation, we find a winner par-

ticle, whose function value is best among all particles, and
each particle is updated depending on the neighborhood dis-
tance between it and the winner on the map.

In Section3, the algorithm of the proposed PSOMS is ex-
plained in detail. We apply PSOMS to two test functions,
which are unimodal and multimodal function. Simulation re-
sults and comparisons with the standard PSO are shown in
Section4, and we confirm that the proposed PSOMS can
effectively enhance the searching efficiency. Furthermore,
in Section5, we investigate the effect of the parameters on
performance quality and their sensitivity. We confirm that
PSOMS is more effective and its parametrical dependence is
not stronger than the standard PSO.

2. Standard Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is an evolutionary al-
gorithm to simulate the movement of flocks of birds. In the
algorithm of PSO, multiple solutions called “particles” co-
exist. At each time step, the particle flies towards its own
past best position and the best position among all particles.
Each particle has two informations; position and velocity.
The position vector of each particlei and its velocity vec-
tor are represented byXi = (xi1, · · · , xid, · · · , xiD) andV i =

(vi1, · · · , vid, · · · , viD), respectively, where (d = 1,2, · · · ,D),
(i = 1,2, · · · ,M) andxid ∈ [xmin, xmax].

(PSO1)(Initialization) Let a generation stept = 0. Randomly
initialize the particle positionXi and its velocityV i for each
particle i, and initializePi = (pi1, pi2, · · · , piD) with a copy
of Xi . Evaluate the objective functionf (Xi) for each parti-
cle i and findPg with the best function value among the all
particles.

(PSO2) Evaluate the fitnessf (Xi). For each particlei, if
f (Xi) < f (Pi), the personal best position (calledpbest)
Pi = Xi . Let Pg represents the best position with the best
fitness among all particles so far (calledgbest). UpdatePg, if
needed.

(PSO3)UpdateV i andXi of each particlei depending on its
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pbestandgbestaccording to

vid(t + 1) = wvid(t) + c1rand(·) (pid − xid(t))

+ c2Rand(·)
(
pg − xid(t)

)
,

xid(t + 1) = xid(t) + vid(t + 1),

(1)

wherew is the inertia weight determining how much of the
previous velocity of the particle is preserved.c1 and c2

are two positive acceleration coefficients, generallyc1 = c2.
rand(·) and Rand(·) are two uniform random numbers samples
from U(0,1).
(PSO4)Let t = t + 1 and go back to (PSO2).

3. Particle Swarm Optimization with Map Structure
(PSOMS)

In the algorithm of PSO, multiple solutions called “par-
ticles” coexist. The most important feature of PSOMS is
that all particles are organized on a rectangular 2-dimensional
grid. In other words, the particles are connected to adjacent
particles by neighborhood relation, which dictates the topol-
ogy, of the map. The position vector of each particlei and its
velocity vector are represented byXi = (xi1, · · · , xid, · · · , xiD)
and V i = (vi1, · · · , vid, · · · , viD), respectively, where (d =

1,2, · · · ,D), (i = 1,2, · · · ,M) andxid ∈ [xmin, xmax].

(PSOMS1)(Initialization) Let a generation stept = 0. Ran-
domly initialize the particle positionXi and its velocityV i

for all particlesi, and initializePi = (pi1, pi2, · · · , piD) with a
copy of Xi . Evaluate the objective functionf (Xi) for all par-
ticle i and findPg with the best function value among the all
particles. Defineg as the winnerc.
(PSOMS2)Evaluate the fitnessf (Xi) and find the winner par-
ticle c with the best fitness among the all particles at current
time.

c = arg min
i
{ f (Xi(t))}. (2)

For each particlei, if f (Xi) < f (Pi), the personal best po-
sition (calledpbest) Pi = Xi .

Let Pg represents the best position with the best fitness
among all particles so far (calledgbest). If f (Xc) < f (Pg),
updategbest Pg = Xc, whereXc is the position of the winner
c.
(PSOMS3)UpdateV i andXi of each particlei depending on
its pbest, the position of the winnerc and the distance on the
map betweeni and the winnerc, according to

vid(t + 1) = wvid(t) + c1rand(·) (pid − xid(t))

+ c2hc,i (xcd − xid(t)) ,

xid(t + 1) = xid(t) + vid(t + 1),

(3)

wherehc,i is the fixed neighborhood function defined by

hc,i = exp

(
−‖r i − rc‖2

2σ2

)
, (4)
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Figure 1: Two test functions with two variables. First and
second variables are on the x-axis and y-axis, respectively,
and z-axis shows its function value. (a) Rastrigin functionf1
which is unimodal function. (b) Rastrigin functionf2 which
is multimodal function.

where‖r i − rc‖ is the distance between map nodesc andi on
the map, the fixed parameterσ corresponds to the width of the
neighborhood function. Therefore, the largeσ strengthens
particles’ spreading force to the whole space, and the smallσ
strengthens their convergent force toward the winner.
(PSOMS4)Let t = t + 1 and go back to (PSOMS2).

4. Simulation Experimentation

In order to evaluate the performance of PSOMS, we use
two benchmark optimization problems. One is the Rosen-
brock function f1 as Eq. (5), which is unimodal function
shown in Fig.1(a), and the other is the Rastrigin function
f2 as Eq. (6) which is multimodal function shown in Fig.1(b)
with numerous local minima.

f1(x) =

D−1∑

d=1

(
100

(
x2

d − xd+1

)2
+ (1− xd)2

)
,

x ∈ [−2.048,2.047]D
(5)

f2(x) =

D∑

d=1

(
x2

d − 10 cos(2πxd) + 10
)
,

x ∈ [−5.12,5.12]D
(6)

For both two functions, we useD = 100 variables. The
optimum solutionsx∗ of f1 and f2 are [1,1, . . . , 1] and
[0,0, . . . , 0], respectively, and the optimum function values
f (x∗) of both functions are 0.

The population size is set to 36 in PSO, and the network
size is 6× 6 in the proposed PSOMS. We choose the best
parameters for each algorithm by the trial-and-error method
although PSOMS can obtain better results than PSO even if
PSOMS uses same parameters as PSO. For PSO,w = 0.7 and
c1 = c2 = 1.6. For PSOMS,w = 0.8, c1 = c2 = 1.8 and
σ = 1.0. We carry out the simulations repeated 30 times for
each optimization function with 2000 time steps.
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Table 1:Comparison Results of PSO and PSOMS forf1 and
f2.

f Method Mean Minimum Maximum

f1
PSO 210.655 81.773 313.365

PSOMS 108.529 94.227 147.550

f2
PSO 442.639 334.330 577.101

PSOMS 190.151 135.687 252.401

4.1. Experiment Results

The performance of PSO and PSOMS with their corre-
sponding minimum and mean function values are listed in
Table1. We can see that the results of PSOMS have better
accuracy. In PSO, the number of particles which move to-
ward gbestor towardpbestis decided by random on every
generation and is not stable. On the other hand, the neighbor-
hood gaussian function is used in PSOMS, therefore, the par-
ticles move according to the neighborhood distance between
the winner and them. The winner’s neighborhood particles
move beyond the winner so that they spread to whole space.
The particles, which are connected at a little distance from
the winner, move toward the winner. The other particles fly
toward theirpbest. In other words, the roles of the PSOMS
particles are determined by the connection relationship.

Figures2 shows the meangbestvalue and the mean func-
tion value of all the particles of every generation over 30 runs
for two functions. In other words, the meangbestvalue of ev-
ery generation shows the swarm convergence, and the mean
fitness value of all the particles shows the particle-diversity
of the swarm. From these figures, the convergence rate of
PSOMS is almost same or slower than the standard PSO, and
it is clear that PSOMS has the more diversity of the particles
than the standard PSO. We can appear this behavior promi-
nently in Rastrigin functionf2 which is the multimodal func-
tion. This is because that the roles of the PSOMS particles
are determined by the connection relationship, therefore they
produce the diversity of the particles. These effects avert the
premature convergence, and the particles of PSOMS can eas-
ily escape from the local optima.

5. Parameter Dependence

Furthermore, in order to investigate the effect of the param-
eters; the inertia weightw and the acceleration coefficientsc1

andc2, on performance quality and their sensitivity, Figs.3
and4 show the mean function values with different param-
eters. The fixed parameters are same as above simulations.
We can see that PSOMS achieve better performances than
the standard PSO for both test functions even if the parame-
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Figure 2: Meangbestvalue of every generation, and mean
fitness value of all particles of every generation over 30 runs.
(a) Rosenbrock functionf1. (b) Rastrigin functionf2.

ters are varied. If we decrease or increase the parameter by
just 0.1, the performance of the standard PSO becomes dras-
tically worse as especially. In other words, the performance
of PSO is sensitive to the parameters, however, the perfor-
mance of PSOMS is stable. From these results, the proposed
PSOMS is more effective and the parametrical dependence is
not stronger than PSO.

6. Conclusions

This study has proposed a Particle Swarm Optimization
with Map Structure (PSOMS) which is the simple method
as the standard PSO. All particles of PSOMS are connected
to adjacent particles by neighborhood relation, which dictates
the topology, of the 2-dimensional map. Each particle is up-
dated depending on the neighborhood distance between it and
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Figure 3: Results for Rosenbrock functionf1 with different
parameters. (a) Using differentw. c1(= c2) is fixed as 1.6 for
PSO and as 1.8 for PSOMS. (b) Using differentc1(= c2). w
is fixed as 0.7 for PSO and as 0.8 for PSOMS.

a winner, whose function value is best among all particles.
In the simulation results, the searching efficiency of PSOMS
is better than PSO. Furthermore, we have confirmed that the
parametrical dependence of PSOMS is not stronger than PSO.
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