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Abstract ticle, whose function value is best among all particles, and

. . o . each particle is updated depending on the neighborhood dis-

Structure (PSOMS). All particles of PSOMS are connected to,

adjacent particles by n_eighb(_)rhood relation, which di(_:ta Rined in detail. We apply PSOMS to two test functions,
the topology, of the 2-dimensional map. Each particle is hich are unimodal and multimodal function. Simulation re-

datgd depending on thg neighborhood distance betweer_1 it&'ﬂ and comparisons with the standard PSO are shown in
a winne, whose function value is 'best. among all partICI(7"§(1,\ction4 and we confirm that the proposed PSOMS can
Simulation results show the searchirfj@ency of PSOMS. effectively enhance the searchingigiency. Furthermore

in Section5, we investigate thefBect of the parameters on
1. Introduction performance quality and their sensitivity. We confirm that

. o . . PSOMS is more feective and its parametrical dependence is
Particle Swarm Optimization (PSO)][is an evolutionary n sironger than the standard PSO.

algorithm to simulate the movement of flocks of birds. Due

to the simple concept, easy implementation, and quick con-

vergence, PSO has attracted much attention and is used to

wide applications in dferent fields in recent years. HoweverR: Standard Particle Swarm Optimization (PSO)

PSO greatly depends on its parameters and converge prema-

turely in case of solving complex problems which have local Particle Swarm Optimization (PSO) is an evolutionary al-

optima. Furthermore, in PSO algorithm, there are no s@srithm to simulate the movement of flocks of birds. In the

cial relationships between particles. Each particle positiorgigorithm of PSO, multiple solutions called “particles” co-

updated according to its personal best position and the 4dst. At each time step, the particle flies towards its own

particle position among the all particles, and their weighgast best position and the best position among all particles.

are determined at random in every generation. On the oth@&ch particle has two informations; position and velocity.

side, in the real world, various personal relationships exi$he position vector of each particleand its velocity vec-

such as the hierarchical relationship, the trust relationshifsy, are represented bY; = (X1, -+, Xid,- -+ , Xip) andV; =

the parents-child relationship and so on. (Viz,* -+ ,Vid,* - - , Vip), respectively, whered(= 1,2,---,D),
Various topological neighborhoods have been considefee 1,2, --- , M) andxig € [Xmin, Xmax]-

by researches’[-{6]. They have applied ring neighborhood e .
the von Neumann neighborhood, or some other topologiégﬁo1)(|n't'a|'zat'°n) Let ageneration step-= 0. Randomly

neighborhoods. However, the parameters are increasedn‘ﬂ)i 'Iize. the pgrtiple' positiorX; and its VeIOCitW.i for each
using fourth term for considering the neighboring best pB& ticlei, and initialize P = (pia, iz, - - , Pip) With a copy
sition when updating the velocity. Moreover, their metho X' Evz_iluate th_e objective funCt.'Oh(Xi) for each part-
are complex algorithms although the one of advantages of Pe'.and findPg with the best function value among the all
standard PSO is the simple concept. particles.

In this study, we propose a new Particle Swarm Optimizd2SO2) Evaluate the fitnes$(X;). For each particle, if
tion with Map Structure (PSOMS) which is the simple algdt(Xi) < f(Pi), the personal best position (callgubes}
rithm as the standard PSO. All particles of PSOMS are & = Xi. Let Py represents the best position with the best
ranged in 2-dimensional grid and are connected to adjacéfess among all particles so far (callgbes}. UpdatePy, if
particles by neighborhood relation which dictates the top&ieeded.
ogy of the grid. In every generation, we find a winner pafPSO3)UpdateV; and X; of each particlé depending on its

In Section3, the algorithm of the proposed PSOMS is ex-
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Xd(t+1) = Xq(t) + vig(t + 1),

wherew is the inertia weight determining how much of the
previous velocity of the particle is preservect; and c, (@) (b)
are two positive acceleratlon déeients, generally; = c. Figure 1: Two test functions with two variables. First and
rand() and Rand{ are two uniform random numbers sample§econd variables are on the x-axis and y-axis, respectively,
from U(0, 1). and z-axis shows its function value. (a) Rastrigin functfpn
(PSO4)Lett =t +1 and go back to (PSO2). which is unimodal function. (b) Rastrigin functidia which

is multimodal function.

3. Particle Swarm Optimization with Map Structure
(PSOMS)

In the algorithm of PSO, multiple solutions called “paivherellri — r¢|| is the distance between map nodendi on
ticles” coexist. The most important feature of PSOMS {§€ map, the fixed parametercorresponds to the width of the
that all particles are organized on a rectangular 2-dimensioR@ighborhood function. Therefore, the largestrengthens
grid. In other words, the particles are connected to adjacBatticles’ spreading force to the whole space, and the smalll
particles by neighborhood relation, which dictates the topsfrengthens their convergent force toward the winner.
ogy, of the map. The position vector of each particied its (PSOMS4)Lett =t + 1 and go back to (PSOMS2).

velocity vector are represented By = (X1, - , Xid,* ** » Xip)

andVi = (i, Vi, -~ ,Vip), respectively, whered( =, gimylation Experimentation
12,---.,D),(i=12---,M)andxg € [Xmin, Xmax]-

(PSOMS1)(Initialization) Let a generation steip= 0. Ran- In order to evaluate the performance of PSOMS, we use

domly initialize the particle positio’; and its velocityy; WO benchmark optimization problems. One is the Rosen-
for all particlesi, and initializeP; = (pi, piz, - - , Pip) With & brock fgnct!on f, as EqQ. b), wh|ch is un|mod§1I.funct|o_n
copy of X;. Evaluate the objective functiof(X;) for all par- Shown in Fig.1(a), and the other is the Rastrigin function
ticle i and find Py with the best function value among the alf2 @s Eq. 6) which is multimodal function shown in Fig(b)
particles. Defing as the winnec. with numerous local minima.

(PSOMS2)Evaluate the fitnes(X;) and find the winner par-

D-1
ticle c with the best fithess among the all particles at current f1(X) = Z (100(x§ _ Xd+1)2 +(1- Xd)z)’
time. = %)
¢ = argmir(f (Xi(1)}. @) X € [-2.048 2.047F°

For each particlé, if f(X;) < f(P;), the personal best po-
sition (calledpbes} P; = X;. 2,

Let Py represents the best position with the best fitness f2(x) = Z (& — 10 cog(2nxg) + 10). (6)
among all particles so far (callegbes}. If f(Xc) < f(Pg), d=1 o
updategbest Py = X, whereX_ is the position of the winner x€[-5.125.12]
¢ For both two functions, we usB = 100 variables. The

(PSOMS3)UpdateV; andX; of each particlé depending on optimum solutionsx* of f, and f, are [L1,...,1] and

its pbest the position of the winnet and the distance on the[o’ 0,...,0], respectively, and the optimum function values
map betweeim and the winnec, according to f(x*) of both functions are 0.

Vig(t + 1) = Wvig(t) + carandf) (pig — Xia (1)) The population size is set to 36 in PSO, and the network
+ Cohei (Xed = %a () 3) size is 6x 6 in the propos_ed PSOMS. We choose the best
parameters for each algorithm by the trial-and-error method
Xig(t + 1) = Xg(t) + vig(t + 1), although PSOMS can obtain better results than PSO even if
PSOMS uses same parameters as PSO. ForS@.7 and
cp = C = 1.6. For PSOMSw = 0.8,¢c; = ¢c; = 1.8 and
IIri = rell? o = 1.0. We carry out the simulations repeated 30 times for
T,.z)’ ) each optimization function with 2000 time steps.

wherehg; is the fixed neighborhood function defined by

hc,i = exp(—
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Table 1:Comparison Results of PSO and PSOMS fipand 10
fo.

10|

f ‘ Method‘ Mean Minimum  Maximum =10
5 PSO | 210.655 81.773 313.365 “_'%1087
PSOMS| 108.529  94.227 147.550 %
| PSO |442638 334330  577.101 Eloﬁ
PSOMS| 190.151 135.687  252.401 8
T 10° |
4.1. Experiment Results 1020

The performance of PSO and PSOMS with their corre-
sponding minimum and mean function values are listed in
Tablel. We can see that the results of PSOMS have better 10°
accuracy. In PSO, the number of particles which move to-
ward gbestor towardpbestis decided by random on every

~

generation and is not stable. On the other hand, the neighbo@ 10°

hood gaussian function is used in PSOMS, therefore, the parg
ticles move according to the neighborhood distance betweeng

the winner and them. The winner’'s neighborhood particles§ 104*;

move beyond the winner so that they spread to whole spaceg
The particles, which are connected at a little distance from3

the winner, move toward the winner. The other particles fly L% 10" g

toward theirpbest In other words, the roles of the PSOMS
particles are determined by the connection relationship.

Figures2 shows the meagbestvalue and the mean func- 10 0

tion value of all the particles of every generation over 30 runs
for two functions. In other words, the meghestvalue of ev-

—&— PSO (Gbest)
“““““ PSO (Mean fitness)
—6— PSOMS (Gbest)
4 PSOMS(Mean fitness) ||

500 1000 1500 2000
Number of Generation t

@)

—&— PSO (Gbest)

e PSO (Mean fitness)
—6— PSOMS (Gbest)
o+ PSOMS§(Mean fitness) |3

500 1000 1500 2000

Number of Generation t

(b)

ery generation shows the swarm convergence, and the mean

fitness value of all the particles shows the particle-diversfjdure 2: Meangbestvalue of every generation, and mean
of the swarm. From these figures, the convergence ratditress value of all particles of every generation over 30 runs.
PSOMS is almost same or slower than the standard PSO, @idrosenbrock functiofy. (b) Rastrigin functionf,.

it is clear that PSOMS has the more diversity of the particles

than the standard PSO. We can appear this behavior promi-

nently in Rastrigin functiorf, which is the multimodal func- 1ers are varied. If we decrease or increase the parameter by

tion. This is because that the roles of the PSOMS partic|gs; .1, the performance of the standard PSO becomes dras-

are determined by the connection relationship, therefore tq%\é"y worse as especially. In other words, the performance

produce the diversity of the particles. Theskeets avertthe ot pso s sensitive to the parameters, however, the perfor-

premature convergence, and the particles of PSOMS can @asqce of PSOMS is stable. From these resullts, the proposed

lly escape from the local optima. PSOMS is more féective and the parametrical dependence is
not stronger than PSO.

5. Parameter Dependence

: . ) 6. Conclusions
Furthermore, in order to investigate théeet of the param-

eters; the inertia weight and the acceleration cfiientsc; This study has proposed a Particle Swarm Optimization
andc,, on performance quality and their sensitivity, Figs. with Map Structure (PSOMS) which is the simple method
and 4 show the mean function values withfidirent param- as the standard PSO. All particles of PSOMS are connected
eters. The fixed parameters are same as above simulatitmadjacent particles by neighborhood relation, which dictates
We can see that PSOMS achieve better performances ttientopology, of the 2-dimensional map. Each particle is up-
the standard PSO for both test functions even if the parardated depending on the neighborhood distance between it and
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Figure 3: Results for Rosenbrock functiofy with different Figure 4:Results for Rastrigin functioff, with different pa-
parameters. (a) Usingfiérentw. c;(= c;) is fixed as 1.6 for rameters. (a) Using fierentw. ¢; = ¢; is fixed as 1.6 for
PSO and as 1.8 for PSOMS. (b) Usingdfeientci(= ¢;). w PSO and as 1.8 for PSOMS. (b) Usingdtdientc;(= ¢). w

is fixed as 0.7 for PSO and as 0.8 for PSOMS. is fixed as 0.7 for PSO and as 0.8 for PSOMS.

a winner, whose function value is best among all particles. borhood Strategies and Preliminary ResultsPimc. of
In the simulation results, the searchinf@ency of PSOMS IEEE Swarm Intelligence Symposiu2008.

is better than PSO. Furthermore, we have confirmed that the

parametrical dependence of PSOMS is not stronger than PSO.
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