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Abstract

Nonlinear oscillators including chaotic systems are
very important devices, and furthermore it is one of
essential component in the natural world to solve a
mechanism of a nonlinear dynamics in several net-
works. In this study, a simple chaotic circuit with three
states of both chaotic oscillation and two different size
limit cycles which is called Multi-State Chaotic Circuit
(MSCC) is proposed. Synchronization phenomena and
complex behavior on a simple network system of the
MSCCs coupled by some inductors are investigated.
Several interesting chaotic phenomena of phase syn-
chronization behavior have been observed in the cou-
pled network system.

1 Introduction

An oscillator is an important device and one of es-
sential component in the natural world. Nonlinear dy-
namics on coupled oscillators is considerable interest-
ing for a wide variety of systems in several scientific
fields and some engineering applications, especially in
stochastic models. Although, many types of coupled
circuit systems have been widely studied in order to
clarify inherent features and many researchers have al-
ready proposed and investigated mechanism of them.
The dynamics of multimode oscillations or phase syn-
chronization on several coupled systems is still consid-
erable interest from the viewpoint of both natural sci-
entific fields and several applications. They have been
confirmed in several systems; e.g., coupled van der Pol
oscillators [1], laser systems [2], and so on. Phase syn-
chronization and pattern dynamics are also interesting
for several engineering applications.

On the other hand, many types of chaotic systems
and circuits have already been proposed and investi-
gated in detail. As interesting phenomena, there are
famous chaotic attractors such a double-scroll family
[3], n-double scroll [4]-[6] and scroll grid attractors [7].
If the active elements including in the systems have
complexity constructed by compound some nonlinear
elements, it can be easily considered that they yield

several interesting features.

In our previous studies, the circuit which can individ-
ually behave both chaotic or periodic oscillations in the
same parameters had been investigated [8]-[12]. This
type of circuit was called a Multi-State Chaotic Circuit
(abbr. MSCC). Multimode oscillations in coupled two
or more multi-state chaotic circuits had been shown [9]
on physical circuit experiments. Some complicated and
interesting phenomena of phase synchronization had
also been investigated [10]-[12]. It is known that com-
plex behavior can be confirmed such chaotic itinerancy
and spatio-temporal chaos on the large scale coupled
networks. Some kinds of oscillation modes had been
reported on large scale coupled chaotic circuits such
phase synchronization, phase propagation and frustra-
tion of oscillation and so on [13]-[15]. On the other
hand, coupled Van der Pol oscillators with hard non-
linearity had been investigated [16], and also stability
analysis of them [17]. A study of coupled multi-state
Van der Pol oscillator had been reported [18]. There are
many oscillators from very low to very high frequency,
which can be easily constructed on the real electrical
circuits. We consider that it is important to investigate
phase synchronization and pattern dynamics in such
coupled oscillator systems.

This paper presents stochastic analysis for several
phase synchronization phenomena of multi-state oscil-
lators coupled by some inductors as several types of
network. Each oscillator circuit can individually be-
have both periodic oscillations (limit cycles) and chaos
in the same parameters. This proposed circuit can be-
have three states such as chaos and two different size of
limit cycles when different initial conditions are given as
initial states. In this study, we consider some coupled
systems which each oscillator is connected to some other
oscillators by inductors, and classification of phase syn-
chronization modes is investigated. In numerical sim-
ulation, many types of phase synchronization modes
are asynchronously confirmed in the proposed systems,
however all parameters of each oscillator circuit are
the same. It means that several phase synchronization
modes are coexisting in the same parameters.
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Fig. 1: Based chaotic circuit.
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Fig. 2: Piecewise linear resistors.

2 Model Description

Figure 1 shows a basic chaotic circuit which consists
three memory elements, diodes and nonlinear resistor.
The basis of this circuit is proposed and analyzed by In-
aba, et al [19]. The dynamics of the circuit has chaotic
features. Although, this circuit diagram is a definitely
system, observed phenomena are often stochastic be-
havior. The equations of the circuit as shown in Fig. 1
are described by

= v

L, = v—wg(ir2) (1)
C— = —(ip1+ir2)—gv

where g is a linear negative conductance value of Nrg,
if we consider the negative resistor as an ideal active
element. The i—v characteristic of one diode is approxi-
mated by two segments piecewise linear functions. The
part of diodes with polarities is constructed by some
diodes, and their threshold voltages can be set as +Vjy
and —Vj, respectively. Its characteristic is shown in
Fig. 2 which is described as three segments piecewise
linear functions by

. 1 . .
va(ir2) = i{lrslm + Vil = Irsiza — Val} (2)
The variable vg(iz2) is a function depending on the

current through their diodes D in Fig. 1, which deter-
mines their chaotic dynamics.

Fig. 3: Design for sawtooth nonlinear resistor Ng with
respect to the origin.

By changing the following variables and parameters
as follows:

1
v=Vaz, t:\/ZIETv “'”:E’ (3)

L i
5=L—;~, 1=9 —Ctl,and5=rs\/%.

Then, we can obtain the normalized circuit equations
with non-dimensional variables.

In this study, we substitute the negative resistor Ng
including in the original chaotic circuit to a symmetrical
continuous piecewise linear resistor. The definition of
the sawtooth nonlinear resistor with both of slopes and
break points are illustrated in Fig. 3. The proposed and
designed chaotic circuit is the same as shown in Fig. 1.
The piecewise linear resistor can be easily constructed
by combining some components in parallel [8][9].

Let us consider that the part of negative resistance
Ng is replaced to the function h(z) represented by a
voltage source z as a canonical form shown in Fig. 3.
When we chose the threshold voltage V; as a normalized
value, then the circuit equations can be normalized and
rewritten as follows:

i = A=) (®)
¢ = —(z+y)-7h()
Fl) = 5 {1dy + 1]~ 16y = 11 (%)
1 K
h(z) = moz+§{;(mk—mk+1)x ®)

{Iz — prs1| — |2 +Pk+1|}}
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Fig. 4: Characteristic of a function h(z) for the pro-
posed circuit.
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Fig. 5: Three states of attractors drawing onto the z—z
plane for the parameters 8 = 10.0, v* = 0.78 and § =
100 with the function h(z) as a nonlinear resistor Ng.

where f(y) and h(z) are piecewise linear functions of
the current y and the voltage z, respectively. The func-
tion h(z) which is designed for several segments piece-
wise linear as symmetric with respect to the origin as
shown in Fig. 3. The parameter v* is adopted as a
common value for the magnitude of an entire shape,
hence the values my(k = 0,1,2,---,K) mean magnitude
of the slope to the ratio for v*. Hereafter, we set the
parameters of the nonlinear function h(z) fixed as fol-
lows:

(p1,P2,P3,P4)
= (0.65, 0.55,0.40,0.30),

(mO) mi, ma, M3, m4)
= (~1.0,2.0, -1.0,1.0, —0.15).

(7)

Then we can obtain the sawtooth shape shown in Fig. 4.

Figure 5 also shows a typical chaotic attractor ob-
tained for the parameters 8 = 10.0, v* = 0.78, § = 100,
with piecewise linear characteristics realized by (7). We
can confirm that both chaotic and two periodic attrac-
tors coexist in the same parameters. It means that we
can observe coexistence with both chaotic attractor and
two different size of limit cycles in this circuit.

chaos
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Fig. 6: Bifurcation diagram by changing the parameter
~* for # = 10.0 and § = 100.

Further a bifurcation diagram by changing the param-
eter v* is shown in Fig. 6. As increasing v* periodic at-
tractor bifurcates to chaos in the following routes while
keeping the limit cycle at around the origin. Oscillation
of symmetrical 1-period — asymmetrical 1-period — bi-
furcates to 2™ via period doubling bifurcation — asym-
metrical slight chaos — symmetrical fluttered chaos.
We can observe that both two oscillation modes exist
separately in the same parameters. However, chaotic
attractor disappear and limit cycle is only observed
when ~* is larger than around 0.98(= 7*°) in these
parameters. The reason of this phenomenon is that
dynamics of the circuit tends toward to be drawn into
inside bounded area because trajectory is grown when
the parameter v* becomes larger. Therefore, it will be
stabilized to limit cycles.

3 Simulation of the coupled MSCCs

In this section, we consider some models of coupled
network systems. There are many types of coupled
systems, such a ring structure, a network, and so on.
Figure 7 shows two examples of the coupled network
systems.

First, let us consider the coupled MSCCs model
which combined number of N chaotic circuits are con-
nected by inductors Lg as a ring structure as shown in
Fig. 7(a). We use a new parameter o = L; /Lo which
corresponds to a coupling strength of both neighbors’
circuit. Every chaotic circuit is composed by all the
same parameters.

Therefore when we choose a threshold voltage value
V, as a criterion, the circuit equation of coupled MSCCs
can be normalized by changing the variables (3) and the
parameter «, then the entire circuit equations can be
rewritten by

Ty

Zk
e = Bz — flw)) ' (8)
Zr = oTk—1— 22k + Tiy1)

—(zx +yx) =7 h(z)
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Fig. 7: Coupled network model: (a) ring type, (b) net-
work type with neumann neighborhood.

Second, consider a model which an MSCC is con-
nected four neighbors as a simple network as shown
in Fig. 7(b). The size of networks is as (IV, M), and the
circuit on the edge of network is connected to opposite
side circuit. It seems like a distribution on the surface
of the torus structure. By the similar way as mentioned
above, the circuit equations of the coupled MSCCs can
be normalized and rewritten as follows:

T(ij) = Z(ig)
Y(i.5) B(za.5) — fW6.s))

25 = @ (Z Te — 4m<i,j>>
3]

—(2(1.5) + Yag) — Pza.5)

where ® means a set of four neighbors to z(; ;.

We show some computer calculation results by using
4-th order Runge-Kutta method with time step size
At = 0.001 for these circuit equations in some cases of
the proposed network model. The parameters of each
circuit are the same in the Sec. 2. The initial conditions
of each circuit are supplied at random.

3.1 Two MSCCs case: N =2

Now we consider that the number of the coupled
MSCCs is two. This case is similar to the model in
the sense of coexistence of chaotic and periodic oscilla-
tions for the previous work [9]. Although the detail
results are omitted, we can confirm several types of

(9)

phase synchronization modes in this model. In this
case, some asynchronous oscillation modes could be
confirmed consequently by numerical simulations when
the initial conditions are varied. We could observe two
different limit cycles by their oscillation size; in-phase
synchronous limit cycles, anti-phase synchronous limit
cycles, anti-phase chaotic synchronous state, and mul-
timode oscillations in the same parameters.

3.2 Three or more MSCCs cases: N >3

Let us consider the case of N = 3 or larger. The cir-
cuit parameters in each MSCC are set as all the same
parameters described in the section 2 with an addi-
tional parameter & = 0.50. Compare with the case
N = 2, several different synchronization phenomena
can be found. Because all types of the results can not
be represented, some simulation results are only shown
here in Fig. 8. From top of the figure, attractors draw-
ing onto z—z plane, synchronization state of zx—zk+1
plane, and waveform of difference between the two vari-
ables zx — zk+1. We could confirm to be coexisting a
lot of phase synchronization modes.

In large coupled systems for N > 4, it is easily ex-
pected to be confirmed more complex behavior. In
the case of N = 4, several types of synchronization
modes are confirmed. Figure 8 (c) shows two-pair of
in-phase and anti-phase synchronization of limit cycles.
Further, figure (d) shows a new type of synchroniza-
tion mode of phase locking phenomena. In the case
of N = 7 or larger, no many synchronization modes
have been confirmed in these parameters on this cou-
pled system. Figure 8 (e) and (f) show typical simu-
lation results for a large number of N. However when
the number of N is large enough and furthermore the
circuit parameters should be set appropriately, a cer-
tain kind of phase propagation phenomena may be
confirmed. Thus, several complex behavior could be
also confirmed as stochastic phenomena in the coupled
multi-state chaotic oscillators.

Table 1 is a summary of the observation of several
phase synchronization modes. When the number of
MSCCs N is changing, it is indicated that several phase
synchronization modes could be observed or not be ob-
served. Each observation mode is stochastically inde-
pendent by initial conditions which are supplied with
random values. Several phase synchronization modes
depend on the initial conditions. If the number of cou-
pled MSCCs is very large, we can not easily expect to
observe all synchronization modes.

3.3 Other cases of the network

We discuss a model of the network as shown in
Fig. 7(b). The network size is as (N, M). If the case
(N,M) = (2,2), this coupled system corresponds to
a ring structure of the case N = 4 in the section
3.2. Figure 9 shows some typical results obtained from
computer simulation in some cases of coupled number
(N, M). The left side part of the figure shows attrac-
tors of each circuit, and the right side part indicates
synchronization state between two oscillators. We can

~—= 29—




<1 |2 e |2 oz |2 s |2 o= |2 [or: 30 F3 o7 |2
T D 3|z Qi P P g %%ﬁ F D
[ = 2| I = 23 =2 2 gl =2
2 z 2 z 2 ' z 2
N 0 ol | I ) n n.
Yzl Y 2 Y ik Y 2 Y z'-TL 212 ¥ 2
2 2 -2 2 -2

100 200 300 400 500 600 700 800

(e)

0 100

0 100

200 300 400 500 600 700 800

1 |2 x [z |fe= 2 o |2
™y
= EA ¥ gni=3 ° 2P|
2 Lz =2 [

2 2 ,[z 2 2 2 2

2 3 2|2 2|12 z||2 2|2 2|2 2

200 300 400

(f)

500 600 700 800

Fig. 8: Some simulation results obtained from coupled three, four and seven MSCCs for a = 0.50, § = 10.0, v~
= 0.78, § = 100. (a) in-phase synchronization, (b) double-mode and one-pair synchronization, (c) two-pair anti-
phase synchronization, (d) two-pair double-mode and anti-phase synchronization of phase locking, (e) seven-phase

e

synchronization, and (f) multimode oscillation.

confirm complex and chaotic synchronization phenom-
ena on the coupled system.

Thus, we can confirm several types of complex and
interesting synchronization phenomena in the same pa-
rameters on the coupled oscillators, i.e., in-phase syn-
chronization, anti-phase synchronization, n-phase syn-
chronization, phase locking, multimode oscillation, and
other types. It is very interesting phenomena that sev-
eral phase synchronization modes are coexisting in spite
of the same parameters. Stochastic phenomena of these
several synchronization modes which can be obtained
from the definitely systems are investigated.

4 Conclusions

In this study, we have investigated several synchro-
nization modes in coupled multi-state chaotic oscilla-
tor circuits. Coexistence of several types oscillation
modes have been confirmed in coupled MSCCs. More-
over, stochastic analysis of several phase synchroniza-
tion modes have been also shown. On large scale cou-
pled chaotic oscillator such a small-world network and
scale-free network, we consider that several types of
complex behavior are expected to yield novel compli-

cated phenomena e.g., spatio-temporal behavior or in-
herent emergent property.
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