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Abstract SOM, Growing Grid and FN-SOM. From these results, we
o S confirm that the results of FN-GG have the fewest inactive
We apply the self-organization considering falseneyrons and its map topology is the most appropriate for

neighbor degree to the fine-tuning of Growing Grid afteghe input data which is in a rectangular input space.
the growth process is finished. This study proposes a Grow-

ing Grid with False-Neighbor degree (FN-GG). We conﬁrm2

that FN-GG can self-organize the input data, which is in a Growing Grid with False-Neighbor Degree

rectangular input space, most effectively. We explain the learning algorithm of the Growing Grid
with False-Neighbor Degree (FN-GG). The network of FN-
1. Introduction GG consists ofim neurons located at a rectangutax m
grid. Each neuron has &dimensional weight vectow;
It is important to investigate various clustering methaw,; = (w;1, wse, -+ ,wiq) (i = 1,2,--- ,nm) as the con-

ods [1], since we can accumulate a huge amount of dat@ntional SOM. The initial values of all the weight vectors
in recent years. The Self-Organizing Map (SOM) is an unare given over the input space at random. A winning fre-
supervised neural network [2] and has attracted attenti@qquencyy; is associated with each neuron and is set to zero
for its clustering properties. SOM can obtains statisticahitially. The range of the elements @dfdimensional in-
features of input data, so, it is simplified model of the selfput datax; = (21,22, ,zjq) (j = 1,2,--- ,N) are
organization process of the brain. assumed to be from 0 to 1.

However, the topology of the conventional SOM has to
be fixed in advance. It is difficult to understand statisti2.1. Learning
cal feature of the high-dimensional input data and choo
an appropriate topology in advance. Therefore, GrowinEE

Grid network [3], which one kinds of SOM, was proposed EN-GG2) Distances between; and all the weight vectors

The network structure is a rectangular grid which increases . . )
o . ) . . are calculated. A winner, denoted byis the neuron with
its size during learning. By inserting complete rows Okhe weidht vector closest to the input vecior
columns of neurons, the network can adapt its height/widtth g P ¥

N-GG1) Aninput vectorz; is inputted to all the neurons
t the same time in parallel.

ratio to the distribution of the input data automatically. ¢ = argmin{||w; — x;| }, (1)
In our past study, we have proposed a new SOM algo- !
rithm, SOM with False-Neighbor degree between neuronghere|| - || is the distance measure, in this study, the Eu-

(called FN-SOM) [5]. False-Neighbor degrees are alloelidean distance is used.
cated between adjacent rows and adjacent columns of FEEN-GG3) Increment of the winning frequency of winner
SOM. They are increased with learning and act as a burdégy 7. = ~.°'4 + 1.
of the distance between map nodes when the weight vectdfN-GG4) The weight vectors of the neurons are updated
of neurons are updated. according to
In this study, we combine the concept of Growing
Grid and FN-SOM and propose a Growing Grid with wi(t +1) = wit) + hae(t)(@; —wi(t), ()
False-Neighbor degree (called FN-GG). We apply the selivhereh.. ;(t) is the neighborhood function of FN-GG;
organization considering false-neighbor degree to the fine- .,
tuning of Gr(_)wmg Grid af_terthe gr(_)vvth processis flmshed. hea(t) = ap exp (_ dy (0,22)) 7 3)
We explain the learning algorithm of FN-GG in de- 200

ta_ul n Sect. 2 The Iearnlr_lg behawors c.)f FN'G.G for 2'Wherea0 is a constant learning rate, and is a constant
dimensional input data are investigated with applying to the,. ... parameter.d, (c, ) is the distance on the grid be-

clustering in Sect. 3.1. In addition, we apply FN-GG to thq‘ween a winner and each neurohand is calculated by

feature extraction problem_ln Sect. 3.2. Lez_arnl_ng perf_oréity-block distance (which is also known &s-norm) as
mance is evaluated both visually and quantitatively using

three measurements in comparison with the conventional dg(s1,s2) = |r1 —ro| + [k1 — k2, (4)
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wheres; is located at;-th row andk;-th column, and,  wheret’ denotes the learning step in the fine-tuning phase
is located at'5-th row andks-th column. which starts after the growth phase is finished.

(FN-GG5) If Y ~; > ), is satisfied, we insert new  d,(c, i) is calculated considering false-neighbor degrees.
rows and columns according to steps from (FN-GG6) t&or instance, for two neurons, which is located at;-th

(FN-GG9). If not, we return to (FN-GG1). row andk;-th column, andss, which is located at,-th
row andks-th column, the neighboring distance is defined

2.2. Insertion of new rows and columns as the following measure;

(FN-GGB6) After n x m x Ay number of learning steps ra—1

have been performed, we determine the neuramhich dy(s1,s2) = (|7“1 —ral+ ) Rr>

has become the winner most frequently; r=ry )
ka—1

q= argmiaX{%}- (5) + <k1 — k| + Z Ck> ,

k:kl

We find the neuronf which is with the most different _—

weight vector in direct topological neighbors @tlenoted Wherery < r, k1 < k2, namely, > 2~ R, means the
asNg,. sum of the false-neighbor degrees between the revasid
(FN-GG7) We insert a new row (or column) betwegand 72, andzzr‘;& Cj means the sum of the false-neighbor de-
f. Without loss of generality, we assume tigaand f are  grees between the colunin andk;.

in ther-th row andk-th and ¢ + 1)-th columns. We insert (FN-GG11)If 37" ; > X is satisfied, we find the false-

a new columnk’ with n neurons between colummsand neighbors and increase the false-neighboring degree, ac-
k + 1. The weight vectors of the new neurons are interpgsording to steps from (FN-GG12) to (FN-GG15). If not,

lated from their neighbors which does increase the densitye return to (FN-GG10).

of weight vectors in the vicinity ofv,. (FN-GG12) We find a set of neuronS which have never
Wy = 0.5 (Wep + Wyepn), 1<r<n. (6) become the winner:

(FN-GG8) The numbem of rows (orm of columns) are §={il» =0} (10)

increasedn = n + 1, then all the winning frequencies are|f the neurons, which have never become the winner, do
resetry; = 0. not exist, namelys = (), we return to (FN-GG10) without
(FN-GG9) If nm > nmuax is fuffilled, we stop growth considering the false-neighbors.
process and perform Fine-tuning of the weight vectors agerN-GG13) A false-neighborf, of each neuromy in S is
cording to steps from (FN-GG10) to (FN-GG15). If not,chosen from the set d¥,,. f, is the neuron whose weight
we continue with the next round of learning, i.e., return te/ector is most distant fronp;
(FN-GG1).
fo= arngaX{H'wi —wgl|l}, g€ S8, i€ Ny (11)
2.3. Fine-tuning considering false-neighbors
(FN-GG14) A false-neighbor degree between eachnd
After the growth process is finished, the network hagg false-neighborf,, R, or Cy, is increased. If; and f,
false-neighbor degrees. The false-neighbor degrees of row& in ther-th row and in thek-th and(k + 1)-th column,

R, (1 <r<n—1)andofcolumng’; (1 <k <m—1) the false-neighbor degre, between columns andk + 1
are allocated between adjacent rows and columns of Fli\sincreased according to

GG, respectively. The initial values &f,. andC.. are set to )
zero. Cp™v = 0% + . (12)
(FN-GG10) We fine-tune the weight vectors using a de-

creasing learning rate with considering the false-neighbord! the same way, if and f, are in thek-th column and in
We performt/. = n x m x \; steps according to steps the (r 4+ 1)-th andr-th row, the false-neighbor degré.

max

from (FN-GG1) to (FN-GG4)\; denotes how many fine- between rows andr + 1 is also increased according to
tuning steps per neurons are performed. 1
' ) . R new __ R old 13
In Eq. (2), we use following neighborhood function A m’ (13)
(') inpl f ; .
fire,i(#) In place offige.; (t) (FN-GG15) The winning frequency of all the neurons are
df2(C i)) reset to zeroy; = 0.

hiei(t') = alt’) exp (%g (7)

3. Experimental Results
wherea(t') is time-dependent learning rate
) We apply FN-GG to various input data and compare with

a(t') = ag(ay fag) /tmax, (8) the conventional SOM, Growing Grid and FN-SOM.
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Figure 1: Learning results for 2-dimensional data. (a) Conventional SOM. (b) FN-SOM. (c) Growing Grid. (d) FN-GG.
Map size of (c) and (d) after learning aex 12.
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Figure 2: U-matrix of each learning result. (a) Conventional SOM. (b) FN-SOM. (c) Growing Grid. (d) FN-GG.

3.1. Application to Clustering features of the input data and fits the given data. Conse-

. . . . . quently, we can understand the structure of the input data
First, we consider 2-dimensional landscape input dat?rom Fig. 2(d)

Total number of the input dat& is 1500 and all the input
data are sorted at random.

Both the conventional SOM and FN-SOM has: =
100 neurons {0 x 10). Growing Grid and FN-GG starts
learning with2 x 2 neurons, and new rows and columnsQuantization Error Qe This measures the average dis-
are inserted as long as the number of neurons is less thamce between each input vector and its winner [2];
nmmax = 100. We repeat the learning 21 times for all

Furthermore, in order to evaluate the learning perfor-
mance of FN-GG in comparison with other three algo-
rithms, we use the following three measurements.

input data. The parameters of the learning are chosen as 1 Y ~
follows; ag = 0.5, 0 = 0.9, a; = 0.006, \, = 30, \; = Qe = N Z |z —w;l], (14)
100, \ = 15. J=t

Respective learning results of four algorithms are shown _ . . .
in Fig. 1, and Fig. 2 shows its U-matrix [4] which repre_wherewj is the weight vector of the corresponding winner

. of the input vectore;. Therefore, the small valu@e is
sent the learned maps in output space. Each gray vaIH]e .
; ore desirable.
corresponds to the distance between the neurons. We con-

sider the conventional SOM and FN-SOM which have prefopographic Error Te: This describes how well the SOM
defined structure. The map of SOM is not matching thereserves the topology of the studied data set [7];
network topology and has a lot of inactive neurons between

clusters as Fig. 1(a). Therefore, Fig. 2(a) can not reflect 1 Y

the distribution state of the input data correctly. The result Te= N Z u(;), (15)
of FN-SOM has few inactive neurons as Fig. 1(b) by ef- J=t

fects of the false-neighbor degree, however, it is a distorted . . o
map for the input data as the conventional SOM. On th%::;rgrjva': dtgigoﬂnnnuer?%gO:H'Qpﬁgq_atﬁaz)rl]sbgr'; tz:ch
other hand, the result of Growing Grid is able to automat- : . J ghb
) : ; ' other, otherwiseu(x;) is 0. The small valu€’e is more
ically choose an appropriate row/column ratio during the, : o . .
C L desirable. Unlike the quantization error, it considers the

growth process shown in Fig. 1(c). However, it is hard ta ;
. . structure of the map. For a strangely twisted map, the to-

understand boundaries between clusters from Fig. 2(c) be- : S . R .
cause there are a lot of inactive neurons in this result. Trpeographlc error is big even if the quantization erroris small,

result of FN-GG (see Fig. 1(d)) can obtain the statisticalleuron Utilization U: This measures the percentage of
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Figure 3: Learning results for Langford data. (a) Conventional SOM. (b) FN-SOM. (c) Growing Grid. (d) FN-GG. Map
size of (c) and (d) after learning agex 13.

Table 1: Quantization errape, Topographic errof’e and  Table 2: Quantization errape, Topographic errof’e and

Neuron utilizationU for 2-dimensional data. Neuron utilizationU for Langford data.
| SOM  Growing Grid FN-SOM  FN-GG | SOM  Growing Grid FN-SOM  FN-GG
Qe | 0.0177 0.0188 0.0158  0.0158 Qe | 0.0523 0.0581 0.0507  0.0495
Te | 0.1653 0.0647 0.1987 0.1787 Te | 0.227 0.157 0.298 0.142
U | 0.7800 0.7407 0.9200 0.9907 U | 0.9100 0.9327 0.9600 0.9711

neurons that are the winner of one or more input vectdt Conclusions

in the map [6]; This study has proposed the Growing Grid with False-

L Neighbor degree (FN-GG). This method applied the false-
U= nm Z Uis (16) neighbor degree to the Growing Grid network. We have ap-
i=1 plied FN-GG to clustering and feature extraction and have

whereu; = 1 if the neuron; is the winner of one or more confirmed its efficiency.

input data. Otherwisey; = 0. Thus,U nearer 1.0 is more
desirable and larger value 6f means fewer inactive neu- References
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