
Growing Grid with False-Neighbor Degree

Haruna Matsushita† and Yoshifumi Nishio†

†Department of Electrical and Electronic Engineering, Tokushima University
2–1 Minami-Josanjima, Tokushima 770–8506, JAPAN

Email: {haruna, nishio}@ee.tokushima-u.ac.jp

Abstract

We apply the self-organization considering false-
neighbor degree to the fine-tuning of Growing Grid after
the growth process is finished. This study proposes a Grow-
ing Grid with False-Neighbor degree (FN-GG). We confirm
that FN-GG can self-organize the input data, which is in a
rectangular input space, most effectively.

1. Introduction

It is important to investigate various clustering meth-
ods [1], since we can accumulate a huge amount of data
in recent years. The Self-Organizing Map (SOM) is an un-
supervised neural network [2] and has attracted attention
for its clustering properties. SOM can obtains statistical
features of input data, so, it is simplified model of the self-
organization process of the brain.

However, the topology of the conventional SOM has to
be fixed in advance. It is difficult to understand statisti-
cal feature of the high-dimensional input data and choose
an appropriate topology in advance. Therefore, Growing
Grid network [3], which one kinds of SOM, was proposed.
The network structure is a rectangular grid which increases
its size during learning. By inserting complete rows or
columns of neurons, the network can adapt its height/width
ratio to the distribution of the input data automatically.

In our past study, we have proposed a new SOM algo-
rithm, SOM with False-Neighbor degree between neurons
(called FN-SOM) [5]. False-Neighbor degrees are allo-
cated between adjacent rows and adjacent columns of FN-
SOM. They are increased with learning and act as a burden
of the distance between map nodes when the weight vectors
of neurons are updated.

In this study, we combine the concept of Growing
Grid and FN-SOM and propose a Growing Grid with
False-Neighbor degree (called FN-GG). We apply the self-
organization considering false-neighbor degree to the fine-
tuning of Growing Grid after the growth process is finished.

We explain the learning algorithm of FN-GG in de-
tail in Sect. 2. The learning behaviors of FN-GG for 2-
dimensional input data are investigated with applying to the
clustering in Sect. 3.1. In addition, we apply FN-GG to the
feature extraction problem in Sect. 3.2. Learning perfor-
mance is evaluated both visually and quantitatively using
three measurements in comparison with the conventional

SOM, Growing Grid and FN-SOM. From these results, we
confirm that the results of FN-GG have the fewest inactive
neurons and its map topology is the most appropriate for
the input data which is in a rectangular input space.

2. Growing Grid with False-Neighbor Degree

We explain the learning algorithm of the Growing Grid
with False-Neighbor Degree (FN-GG). The network of FN-
GG consists ofnm neurons located at a rectangularn×m
grid. Each neuron has ad-dimensional weight vectorwi

wi = (wi1, wi2, · · · , wid) (i = 1, 2, · · · , nm) as the con-
ventional SOM. The initial values of all the weight vectors
are given over the input space at random. A winning fre-
quencyγi is associated with each neuron and is set to zero
initially. The range of the elements ofd-dimensional in-
put dataxj = (xj1, xj2, · · · , xjd) (j = 1, 2, · · · , N) are
assumed to be from 0 to 1.

2.1. Learning

(FN-GG1) An input vectorxj is inputted to all the neurons
at the same time in parallel.
(FN-GG2)Distances betweenxj and all the weight vectors
are calculated. A winner, denoted byc, is the neuron with
the weight vector closest to the input vectorxj ;

c = arg min
i
{‖wi − xj‖}, (1)

where‖ · ‖ is the distance measure, in this study, the Eu-
clidean distance is used.
(FN-GG3) Increment of the winning frequency of winnerc
by γc

new = γc
old + 1.

(FN-GG4) The weight vectors of the neurons are updated
according to

wi(t + 1) = wi(t) + hGc,i(t)(xj − wi(t)), (2)

wherehGc,i(t) is the neighborhood function of FN-GG;

hGc,i(t) = α0 exp
(
−dg

2(c, i)
2σ0

2

)
, (3)

whereα0 is a constant learning rate, andσ0 is a constant
width parameter.dg(c, i) is the distance on the grid be-
tween a winnerc and each neuroni and is calculated by
city-block distance (which is also known asL1-norm) as

dg(s1, s2) = |r1 − r2| + |k1 − k2|, (4)

- 74 -

wheres1 is located atr1-th row andk1-th column, ands2

is located atr2-th row andk2-th column.
(FN-GG5) If

∑nm
i=1 γi ≥ λg is satisfied, we insert new

rows and columns according to steps from (FN-GG6) to
(FN-GG9). If not, we return to (FN-GG1).

2.2. Insertion of new rows and columns

(FN-GG6) After n × m × λg number of learning steps
have been performed, we determine the neuronq which
has become the winner most frequently;

q = arg max
i

{γi}. (5)

We find the neuronf which is with the most different
weight vector in direct topological neighbors ofq denoted
asNq1.
(FN-GG7) We insert a new row (or column) betweenq and
f . Without loss of generality, we assume thatq andf are
in ther-th row andk-th and (k + 1)-th columns. We insert
a new columnk′ with n neurons between columnsk and
k + 1. The weight vectors of the new neurons are interpo-
lated from their neighbors which does increase the density
of weight vectors in the vicinity ofwq.

wrk′ = 0.5
(
wrk + wr(k+1)

)
, 1 ≤ r ≤ n. (6)

(FN-GG8) The numbern of rows (orm of columns) are
increased;n = n + 1, then all the winning frequencies are
reset:γi = 0.
(FN-GG9) If nm ≥ nmmax is fulfilled, we stop growth
process and perform Fine-tuning of the weight vectors ac-
cording to steps from (FN-GG10) to (FN-GG15). If not,
we continue with the next round of learning, i.e., return to
(FN-GG1).

2.3. Fine-tuning considering false-neighbors

After the growth process is finished, the network has
false-neighbor degrees. The false-neighbor degrees of rows
Rr (1 ≤ r ≤ n − 1) and of columnsCk (1 ≤ k ≤ m − 1)
are allocated between adjacent rows and columns of FN-
GG, respectively. The initial values ofRr andCr are set to
zero.

(FN-GG10) We fine-tune the weight vectors using a de-
creasing learning rate with considering the false-neighbors.
We performt′max = n × m × λf steps according to steps
from (FN-GG1) to (FN-GG4).λf denotes how many fine-
tuning steps per neurons are performed.

In Eq. (2), we use following neighborhood function
hF c,i(t′) in place ofhGc,i(t)

hF c,i(t
′) = α(t′) exp

(
−df

2(c, i)
2σ2

0

)
. (7)

whereα(t′) is time-dependent learning rate

α(t′) = α0(α1/α0)t′/t′max , (8)

wheret′ denotes the learning step in the fine-tuning phase
which starts after the growth phase is finished.

dg(c, i) is calculated considering false-neighbor degrees.
For instance, for two neuronss1, which is located atr1-th
row andk1-th column, ands2, which is located atr2-th
row andk2-th column, the neighboring distance is defined
as the following measure;

df (s1, s2) =

(
|r1 − r2| +

r2−1∑
r=r1

Rr

)

+

(
|k1 − k2| +

k2−1∑
k=k1

Ck

)
,

(9)

wherer1 < r2, k1 < k2, namely,
∑r2−1

r=r1
Rr means the

sum of the false-neighbor degrees between the rowsr1 and
r2, and

∑k2−1
k=k1

Ck means the sum of the false-neighbor de-
grees between the columnk1 andk2.
(FN-GG11) If

∑nm
i=1 γi ≥ λ is satisfied, we find the false-

neighbors and increase the false-neighboring degree, ac-
cording to steps from (FN-GG12) to (FN-GG15). If not,
we return to (FN-GG10).

(FN-GG12) We find a set of neuronsS which have never
become the winner:

S = {i | γi = 0}. (10)

If the neurons, which have never become the winner, do
not exist, namelyS = ∅, we return to (FN-GG10) without
considering the false-neighbors.
(FN-GG13) A false-neighborfq of each neuronq in S is
chosen from the set ofNq1. fq is the neuron whose weight
vector is most distant fromq;

fq = arg max
i

{‖wi − wq‖}, q ∈ S, i ∈ Nq1. (11)

(FN-GG14) A false-neighbor degree between eachq and
its false-neighborfq, Rr or Ck, is increased. Ifq andfq

are in ther-th row and in thek-th and(k + 1)-th column,
the false-neighbor degreeCk between columnsk andk +1
is increased according to

Ck
new = Ck

old +
1
n

. (12)

In the same way, ifq andfq are in thek-th column and in
the (r + 1)-th andr-th row, the false-neighbor degreeRr

between rowsr andr + 1 is also increased according to

Rr
new = Rr

old +
1
m

. (13)

(FN-GG15) The winning frequency of all the neurons are
reset to zero:γi = 0.

3. Experimental Results

We apply FN-GG to various input data and compare with
the conventional SOM, Growing Grid and FN-SOM.

- 75 -

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)
0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)
0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)
0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d)

Figure 1: Learning results for 2-dimensional data. (a) Conventional SOM. (b) FN-SOM. (c) Growing Grid. (d) FN-GG.
Map size of (c) and (d) after learning are9 × 12.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a)

0.05

0.1

0.15

0.2

0.25

(b)

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(c)

0.05

0.1

0.15

0.2

0.25

(d)

Figure 2: U-matrix of each learning result. (a) Conventional SOM. (b) FN-SOM. (c) Growing Grid. (d) FN-GG.

3.1. Application to Clustering

First, we consider 2-dimensional landscape input data.
Total number of the input dataN is 1500 and all the input
data are sorted at random.

Both the conventional SOM and FN-SOM hasnm =
100 neurons (10 × 10). Growing Grid and FN-GG starts
learning with2 × 2 neurons, and new rows and columns
are inserted as long as the number of neurons is less than
nmmax = 100. We repeat the learning 21 times for all
input data. The parameters of the learning are chosen as
follows; α0 = 0.5, σ0 = 0.9, α1 = 0.006, λg = 30, λf =
100, λ = 15.

Respective learning results of four algorithms are shown
in Fig. 1, and Fig. 2 shows its U-matrix [4] which repre-
sent the learned maps in output space. Each gray value
corresponds to the distance between the neurons. We con-
sider the conventional SOM and FN-SOM which have pre-
defined structure. The map of SOM is not matching the
network topology and has a lot of inactive neurons between
clusters as Fig. 1(a). Therefore, Fig. 2(a) can not reflect
the distribution state of the input data correctly. The result
of FN-SOM has few inactive neurons as Fig. 1(b) by ef-
fects of the false-neighbor degree, however, it is a distorted
map for the input data as the conventional SOM. On the
other hand, the result of Growing Grid is able to automat-
ically choose an appropriate row/column ratio during the
growth process shown in Fig. 1(c). However, it is hard to
understand boundaries between clusters from Fig. 2(c) be-
cause there are a lot of inactive neurons in this result. The
result of FN-GG (see Fig. 1(d)) can obtain the statistical

features of the input data and fits the given data. Conse-
quently, we can understand the structure of the input data
from Fig. 2(d).

Furthermore, in order to evaluate the learning perfor-
mance of FN-GG in comparison with other three algo-
rithms, we use the following three measurements.

Quantization Error Qe: This measures the average dis-
tance between each input vector and its winner [2];

Qe =
1
N

N∑
j=1

‖xj − w̄j‖, (14)

wherew̄j is the weight vector of the corresponding winner
of the input vectorxj . Therefore, the small valueQe is
more desirable.

Topographic Error Te: This describes how well the SOM
preserves the topology of the studied data set [7];

Te =
1
N

N∑
j=1

u(xj), (15)

whereN is the total number of input data,u(xj) is 1 if the
winner and 2nd winner ofxj are NOT 1-neighbors each
other, otherwiseu(xj) is 0. The small valueTe is more
desirable. Unlike the quantization error, it considers the
structure of the map. For a strangely twisted map, the to-
pographic error is big even if the quantization error is small.

Neuron Utilization U: This measures the percentage of

- 76 -

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(a)
0

0.2
0.4

0.6
0.8

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(b)
0

0.2
0.4

0.6
0.8

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(c)
0

0.2
0.4

0.6
0.8

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(d)

Figure 3: Learning results for Langford data. (a) Conventional SOM. (b) FN-SOM. (c) Growing Grid. (d) FN-GG. Map
size of (c) and (d) after learning are8 × 13.

Table 1: Quantization errorQe, Topographic errorTe and
Neuron utilizationU for 2-dimensional data.

SOM Growing Grid FN-SOM FN-GG

Qe 0.0177 0.0188 0.0158 0.0158
Te 0.1653 0.0647 0.1987 0.1787
U 0.7800 0.7407 0.9200 0.9907

neurons that are the winner of one or more input vector
in the map [6];

U =
1

nm

nm∑
i=1

ui, (16)

whereui = 1 if the neuroni is the winner of one or more
input data. Otherwise,ui = 0. Thus,U nearer 1.0 is more
desirable and larger value ofU means fewer inactive neu-
rons.

Table 1 shows the calculated three measurements.Qe
andU of FN-GG are the best values.Te of Growing Grid is
the smallest, but we can confirm that FN-GG has improved
from FN-SOM.

3.2. Application to Feature Extraction

Next, we apply FN-GG to the feature extraction for the
data generated by Langford equation [8]. The data is onto
2-torus and has the cavity. The total number of dataN is
1000.

The learning results are shown in Fig. 3. We can confirm
that FN-GG can self-organize up to the edge of the input
data in all the methods. Furthermore, the calculated mea-
surements are shown in Table 2. For all measurements, FN-
GG obtains the best values. These results mean that in the
learned map of FN-GG, there are few errors between the
input data and the neurons as FN-SOM, and FN-GG self-
organizes most effectively with maintenance of top quality
topology.

Table 2: Quantization errorQe, Topographic errorTe and
Neuron utilizationU for Langford data.

SOM Growing Grid FN-SOM FN-GG

Qe 0.0523 0.0581 0.0507 0.0495
Te 0.227 0.157 0.298 0.142
U 0.9100 0.9327 0.9600 0.9711

4. Conclusions

This study has proposed the Growing Grid with False-
Neighbor degree (FN-GG). This method applied the false-
neighbor degree to the Growing Grid network. We have ap-
plied FN-GG to clustering and feature extraction and have
confirmed its efficiency.

References

[1] J. Vesanto and E. Alhoniemi, “Clustering of the Self-
Organizing Map,” IEEE Trans. Neural Networks, vol. 11,
no. 3, pp. 586–600, 2002.

[2] T. Kohonen,Self-organizing Maps, Berlin, Springer, 1995.

[3] B. Fritzke, “Growing Grid – a self-organizing network with
constant neighborhood range and adaptation strength,”Neu-
ral Processing Letters, vol. 2, no. 5, pp. 9–13, 1995.

[4] A. Ultsch, “Clustering with SOM: U*C”,Proc. Workshop on
Self-Organizing Maps, pp. 75–82, 2005.

[5] H. Matsushita and Y. Nishio, “Self-Organizing Map with
False-Neighbor Degree between Neurons for Effective
Self-Organization,”IEICE Transactions on Fundamentals,
vol. E91-A, no. 6, pp. 1463–1469, Jun. 2008.

[6] Y. Cheung and L. Law, “Rival-Model Penalized Self-
Organizing Map,” IEEE Trans. Neural Networks, vol. 18,
no. 1, pp. 289–295, 2007.

[7] K. Kiviluoto, “Topology Preservation in Self-Organizing
Maps”, Proc. of International Conference on Neural Net-
works, pp. 294–299, 1996.

[8] W. F. Langford, “Numerical Studies of torus bifurcations,”
International Series of Numerical Mathematics, vol.70,
pp.285-295, 1984.

- 77 -

