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Abstract posed network with fluctuation of structure can find better

solutions than the network with additional noise signats an

The fluctuation observed in the real brain has attracte#le conventional network for generalization ability.

attentions of many researchers. We consider that the fluctu-
ation plays an important role for the higher brain function,
In this study, the neural network with fluctuation of struc2
ture is investigated. By computer S|mulat|ons, we conﬁ_rm The standard BP learning algorithm was introduced in
that the neural network with fluctuation of structure gam;

Neural Network with Fluctuation of Structure

: ]. The dfectiveness of the BP learning has been con-
better performance than the conventional neural netwo . . )
N . ifmed in pattern recognition, system control, signal pro-
for generalization ability.

cessing and so on [4]. In this study, the learning ability

and generalization ability of the network with fluctuation

1. Introduction of structure are investigated by using the batch BP learning
algorithm. .

Studies on the human brain have been carried out ac-The sigmoid function has arffect on modifying connec-
tively on various levels. Many modelings of the humartion weights and it is very important for BP learning. This
brain with the visual or the audio sensation are reported [1function is anS shaped monotonic increasing function that
Recently, the fluctuation observed in the real brain has dtas the general form as following equation:
tracted attentions of many researchers. The fluctuation in
the brain is one of the living evidence, and the amplitude f(x) = 1 (1)
of the fluctuation decreases or disappears when human be- 1+e?X
comes sick. It can be said that the fluctuation has some&,
relationship to the higher brain functions. We considet th
it is very important to apply this fluctuation factors to arti values ofs are illustrated in Fig. 1.

ficial neural network model. We apply the sequence generated by the uniform random

In our previous research, we have investigated the abllltf}fmction toe of the sigmoid function after the following
of the feedforward neural network when the shape of thlﬁwear transform to set the average a8 and control the
sigmoid function of neurons is changed according to thﬁmplitude.
logistic map equation [2]. We have compared fteet with
the simulated annealing and have confirmed that change &(t) = A(random() — 0.5) + 1.0 )
sometimes led the state of the network to better solutions.

We consider that the neural network with fluctuation ofyhere random() means the function producing uniform
structure has many possibilities for the information pProrandom value from @ to 10 and, A Corresponds to the
cessing. We assume that the real brain operates well whgghge ofz. In this simulation, we set fromA = 0.02 to Q6.
the neural circuits are shaken by some kinds of influences.

In this study, the learning ability of the network with fluc-  Next, two fluctuation methods are proposed as follows;
tuation of structure is investigated. Two methods giv-

ing fluctuation are proposed to investigate the mdBt € 5 1 gherent Fluctuation Method

cient method providing fluctuations; coherent fluctuation

method and noncoherent fluctuation method. For compari- The gradient of the sigmoid function fluctuates with a
son, we investigate the network shaken by additional noismherent value for all neurons in the hidden layer at every
signals. By computer simulations, we confirm that the pradpdating.

ereg is a constant that determines the steepness of the
% shaped curve. Some curves of the function fdfedent
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3. Neural Network with Additional Noise Signals

For comparison, we investigate the network shaken by
additional noise signals. We consider that the uniform
noise (generating value form@to 10) is injected to neu-
rons in the hidden layer. Figure 3 shows a conceptual neu-
ron model for this neural network, whegdimits the am-
plitude of the injected signals.

t
-15 -10 -5 0 5 10 15 Xulh

Figure 1: Sigmoid function and fluctuatien X (t+1)

2.2. Noncoherent Fluctuation M ethod

The gradient of the sigmoid function fluctuates with non-

coherent dferent values for all neurons in the hidden layer 'Noise signd|
at every updating by giving fferent initial conditions to
the logistic map. Figure 3: A neuron model with additional noise signals.

A conceptual figure of the two fluctuation methods are

shown in Fig. 2. ]
4. Simulated Results

- ! ! ! We consider that the neural network with fluctuation of
neuron / - / —'/ e — structure has a generalization ability as well as a learning

ability by virtue of its ingficient learning process. In this

ond / . / . / e / section, we investigate the learning ability and the gdnera
neuron |/ ! ! ! ization ability of our proposed networks. We consider the
learning of the structure of the skew tent map by training

3rd // . / . / eee / the network to output the same time series as the input time
neuron series produced by the skew tent map.

: : : The skew tent map and an example of time series are
Nt ‘ 3 3 3 shown in Fig. 4. The length of chaotic time series is set to
neuron / - / Y / 10 and the number of learning patterns is set to 10. When

the network learns 10 lengths of time series, 10 nodes are
prepared in the input and the output layers. Each data is

iteration time

(a) Coherent fluctuation method. inputted to each node in the input layer. We carried out
; ; ; ‘ the BP learning by using the following parameters. The
iz‘umn / — / — T e — / parameter of the inertia rate is fixed @s= 0.05 and the
! ! ! ! initial values of the weights are given betweet.0 and
- 3 3 3 ; 1.0 at random. The learning time is set to 10000, and 12
neuron / — —'/ e — / neurons are prepared in the hidden layer. The gradient of

the sigmoid function of the conventional network is fixed

ard | | | i ase = 1.0.
neuron /_"7/’ _”7/’ e — S
4.1. Learning Ability
First, we investigate the learnindfieiency as the aver-
Nth !
neuron // / // I / age of the total error between the output and the desired
target, when the network structure of the hidden layer is

_ changed. The “Average Errét,,” for this learning exam-
(b) Noncoherent fluctuation method. ple is defined by the following equation.

Figure 2: A conceptual figure of two fluctuation methods. 11 & (1 &
Bae =S5 5 Z(tpi - Opi)2 . 3)
PN p=1 2 i=1

iteration time
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The simulated result of networks with fluctuation of B: amplitude of injected noise

structure is shown in Fig. 5. When the value of fluctua-_ : L
tion Ais 0.02, the methods giving fluctuation and the Conl_:|gure 6: Network_ performandg, by using noise signals
ventional network obtain similar performance. While théne'[hOdS for learning data.

fluctuation methods becomes worse by increagingVe

compare the performance between the coherent and nQfv,  Generalization Ability

coherent fluctuation methods. Wharns small value, both

fluctuation methods show similar performancégf.. The Next, we investigate a generalization ability of the pro-
noncoherent fluctuation method can keep the small errppsed neural networks. After the above learning of 10 pat-
(Eave) for learning data with increasing. terns of the time series, we input an unknown chaotic time

Figure 6 shows the simulated result of network witrseries generated the same skew tent map as an input pat-
noise signals. The horizontal axisfswhich means the tern.
amplitude of injected noise and the vertical axi&ijg. for The simulation result for unknown chaotic time series
learning data. From this figure, we can confirm the noisafter learning of the network with fluctuation of structure
signals method shows similar performance to the conveis shown in Fig. 7. The horizontal axis is the range of
tional network wherg is set to 0.02. However, the perfor- fluctuationA and the vertical axis i€ave for 10 different
mance of noise signals method is getting worse by increaghnknown input data. From this figure, the networks with
ing B value. fluctuation of structure gain better performance than the
conventional network in every range 8f We compare
0.0002 — the performance between the coherent and the noncoherent
fluctuation methods. WheA is small value, the coherent
fluctuation method is better than the noncoherent fluctua-
§ tion method. However, the coherent and the noncoherent
)K,__—x————x—--*’/ fluctuation methods are getting similar performance with
/ 1 increasingA.

Noncoherent fluctuation | Figure 8 shows the simulated result of network with
noise signals. From this figure, we can confirm the noise
signals method obtains almost similar performance to the
conventional network.

The simulated results of the fluctuation methods for un-
o e o e o & o1 known data are summarized in Tab. 2. In the table, the
A (range of fluctuation) average of 10E,. for different initial conditions of the
weights between all layers is shown. From this tablge
Figure 5: Network performandg,e by using coherentand of the proposed network with the fluctuation of structure
noncoherent fluctuation methods for learning data. are small. However, the noise signal method and the con-
ventional network do not operate well, because the average
The simulated results of the fluctuation methods arerror Eae 0f the network is large. We can see that the net-
summarized in Tab. 1. In this table, the average oE3@ work with fluctuation of structure gain better performance
for different initial conditions of the weights between allon generalization ability than the noise signal method and
layers is shown. From this table, we can confirm gt  the conventional network.
of the proposed network with the fluctuation methods and From these results, we consider that the fluctuation of
the conventional network is similar. We consider that thstructure are very important role to learn some charaeteris
performance of fluctuation methods are not stedence to tics or features of the given data.
the conventional network for learning ability. Before concluding this paper, we have to say that the net-
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Table 1: Learning ability for learning data.

Coherent | Noncoherent| Noise Conventional
fluctuation| fluctuation signals network
Eae || 0.000038| 0.000038 || 0.000057| 0.000039 |
Table 2: Generalization ability for unknown data.
Coherent | Noncoherent| Noise Conventional
fluctuation| fluctuation signals network
Eae || 0.017382| 0.013418 || 0.025440] 0.025735 |
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Figure 7: Network performandg,e by using coherentand
noncoherent fluctuation methods for unknown data.
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Figure 8: Network performandg,,. by using noise signals
methods for unknown data.

work does not learn to output the same data as input data
directly. In our past study, we have investigated the per-
formance of the network when a random data is inputted as
unknown data after the learning. We confirmed the network
does not output the same data as input data directly [8].

5. Conclusions

In this study, we investigated learning ability and gener-
alization ability of neural network with fluctuation of stru
ture for back propagation learning. By computer simula-
tions, we confirmed that the proposed network with fluctu-
ation can produce the time series for unknown input data.
We can see that the network with fluctuation of structure
operates morefkectively than the network with additional
noise signals for generalization ability. Furthermores th
noncoherent fluctuation gains better performance than the
coherent fluctuation for unknown input data. The detailed
investigation of the fect of diferent fluctuation methods
is our future work.
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