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Abstract

The fluctuation observed in the real brain has attracted
attentions of many researchers. We consider that the fluctu-
ation plays an important role for the higher brain function.
In this study, the neural network with fluctuation of struc-
ture is investigated. By computer simulations, we confirm
that the neural network with fluctuation of structure gains
better performance than the conventional neural network
for generalization ability.

1. Introduction

Studies on the human brain have been carried out ac-
tively on various levels. Many modelings of the human
brain with the visual or the audio sensation are reported [1].
Recently, the fluctuation observed in the real brain has at-
tracted attentions of many researchers. The fluctuation in
the brain is one of the living evidence, and the amplitude
of the fluctuation decreases or disappears when human be-
comes sick. It can be said that the fluctuation has some
relationship to the higher brain functions. We consider that
it is very important to apply this fluctuation factors to arti-
ficial neural network model.

In our previous research, we have investigated the ability
of the feedforward neural network when the shape of the
sigmoid function of neurons is changed according to the
logistic map equation [2]. We have compared its effect with
the simulated annealing and have confirmed that change
sometimes led the state of the network to better solutions.

We consider that the neural network with fluctuation of
structure has many possibilities for the information pro-
cessing. We assume that the real brain operates well when
the neural circuits are shaken by some kinds of influences.
In this study, the learning ability of the network with fluc-
tuation of structure is investigated. Two methods giv-
ing fluctuation are proposed to investigate the most effi-
cient method providing fluctuations; coherent fluctuation
method and noncoherent fluctuation method. For compari-
son, we investigate the network shaken by additional noise
signals. By computer simulations, we confirm that the pro-

posed network with fluctuation of structure can find better
solutions than the network with additional noise signals and
the conventional network for generalization ability.

2. Neural Network with Fluctuation of Structure

The standard BP learning algorithm was introduced in
[3]. The effectiveness of the BP learning has been con-
firmed in pattern recognition, system control, signal pro-
cessing and so on [4]. In this study, the learning ability
and generalization ability of the network with fluctuation
of structure are investigated by using the batch BP learning
algorithm. .

The sigmoid function has an effect on modifying connec-
tion weights and it is very important for BP learning. This
function is anS shaped monotonic increasing function that
has the general form as following equation:

f (x) =
1

1+ e−εx
(1)

whereε is a constant that determines the steepness of the
S shaped curve. Some curves of the function for different
values ofε are illustrated in Fig. 1.

We apply the sequence generated by the uniform random
function to ε of the sigmoid function after the following
linear transform to set the average as 1.0 and control the
amplitude.

ε(t) = A(random()− 0.5)+ 1.0 (2)

where random() means the function producing uniform
random value from 0.0 to 1.0 and,A corresponds to the
range ofε. In this simulation, we set fromA = 0.02 to 0.6.

Next, two fluctuation methods are proposed as follows;

2.1. Coherent Fluctuation Method

The gradient of the sigmoid function fluctuates with a
coherent value for all neurons in the hidden layer at every
updating.
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Figure 1: Sigmoid function and fluctuationε.

2.2. Noncoherent Fluctuation Method

The gradient of the sigmoid function fluctuates with non-
coherent different values for all neurons in the hidden layer
at every updating by giving different initial conditions to
the logistic map.

A conceptual figure of the two fluctuation methods are
shown in Fig. 2.
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Figure 2: A conceptual figure of two fluctuation methods.

3. Neural Network with Additional Noise Signals

For comparison, we investigate the network shaken by
additional noise signals. We consider that the uniform
noise (generating value form 0.0 to 1.0) is injected to neu-
rons in the hidden layer. Figure 3 shows a conceptual neu-
ron model for this neural network, whereβ limits the am-
plitude of the injected signals.
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Figure 3: A neuron model with additional noise signals.

4. Simulated Results

We consider that the neural network with fluctuation of
structure has a generalization ability as well as a learning
ability by virtue of its inefficient learning process. In this
section, we investigate the learning ability and the general-
ization ability of our proposed networks. We consider the
learning of the structure of the skew tent map by training
the network to output the same time series as the input time
series produced by the skew tent map.

The skew tent map and an example of time series are
shown in Fig. 4. The length of chaotic time series is set to
10 and the number of learning patterns is set to 10. When
the network learns 10 lengths of time series, 10 nodes are
prepared in the input and the output layers. Each data is
inputted to each node in the input layer. We carried out
the BP learning by using the following parameters. The
parameter of the inertia rate is fixed asη = 0.05 and the
initial values of the weights are given between−1.0 and
1.0 at random. The learning time is set to 10000, and 12
neurons are prepared in the hidden layer. The gradient of
the sigmoid function of the conventional network is fixed
asε = 1.0.

4.1. Learning Ability

First, we investigate the learning efficiency as the aver-
age of the total error between the output and the desired
target, when the network structure of the hidden layer is
changed. The “Average ErrorEave” for this learning exam-
ple is defined by the following equation.

Eave =
1
P

1
N

P
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. (3)
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(a) Skew tent map. (b) Time series.

Figure 4: Skew tent map.

The simulated result of networks with fluctuation of
structure is shown in Fig. 5. When the value of fluctua-
tion A is 0.02, the methods giving fluctuation and the con-
ventional network obtain similar performance. While the
fluctuation methods becomes worse by increasingA. We
compare the performance between the coherent and non-
coherent fluctuation methods. WhenA is small value, both
fluctuation methods show similar performance ofEave. The
noncoherent fluctuation method can keep the small error
(Eave) for learning data with increasingA.

Figure 6 shows the simulated result of network with
noise signals. The horizontal axis isβ which means the
amplitude of injected noise and the vertical axis isEave for
learning data. From this figure, we can confirm the noise
signals method shows similar performance to the conven-
tional network whenβ is set to 0.02. However, the perfor-
mance of noise signals method is getting worse by increas-
ing β value.
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Figure 5: Network performanceEave by using coherent and
noncoherent fluctuation methods for learning data.

The simulated results of the fluctuation methods are
summarized in Tab. 1. In this table, the average of 10Eave

for different initial conditions of the weights between all
layers is shown. From this table, we can confirm thatEave

of the proposed network with the fluctuation methods and
the conventional network is similar. We consider that the
performance of fluctuation methods are not so difference to
the conventional network for learning ability.
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Figure 6: Network performanceEave by using noise signals
methods for learning data.

4.2. Generalization Ability

Next, we investigate a generalization ability of the pro-
posed neural networks. After the above learning of 10 pat-
terns of the time series, we input an unknown chaotic time
series generated the same skew tent map as an input pat-
tern.

The simulation result for unknown chaotic time series
after learning of the network with fluctuation of structure
is shown in Fig. 7. The horizontal axis is the range of
fluctuationA and the vertical axis isEave for 10 different
unknown input data. From this figure, the networks with
fluctuation of structure gain better performance than the
conventional network in every range ofA. We compare
the performance between the coherent and the noncoherent
fluctuation methods. WhenA is small value, the coherent
fluctuation method is better than the noncoherent fluctua-
tion method. However, the coherent and the noncoherent
fluctuation methods are getting similar performance with
increasingA.

Figure 8 shows the simulated result of network with
noise signals. From this figure, we can confirm the noise
signals method obtains almost similar performance to the
conventional network.

The simulated results of the fluctuation methods for un-
known data are summarized in Tab. 2. In the table, the
average of 10Eave for different initial conditions of the
weights between all layers is shown. From this table,Eave

of the proposed network with the fluctuation of structure
are small. However, the noise signal method and the con-
ventional network do not operate well, because the average
errorEave of the network is large. We can see that the net-
work with fluctuation of structure gain better performance
on generalization ability than the noise signal method and
the conventional network.

From these results, we consider that the fluctuation of
structure are very important role to learn some characteris-
tics or features of the given data.

Before concluding this paper, we have to say that the net-
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Table 1: Learning ability for learning data.

Coherent Noncoherent Noise Conventional
fluctuation fluctuation signals network

Eave 0.000038 0.000038 0.000057 0.000039

Table 2: Generalization ability for unknown data.

Coherent Noncoherent Noise Conventional
fluctuation fluctuation signals network

Eave 0.017382 0.013418 0.025440 0.025735
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Figure 7: Network performanceEave by using coherent and
noncoherent fluctuation methods for unknown data.
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Figure 8: Network performanceEave by using noise signals
methods for unknown data.

work does not learn to output the same data as input data
directly. In our past study, we have investigated the per-
formance of the network when a random data is inputted as
unknown data after the learning. We confirmed the network
does not output the same data as input data directly [8].

5. Conclusions

In this study, we investigated learning ability and gener-
alization ability of neural network with fluctuation of struc-
ture for back propagation learning. By computer simula-
tions, we confirmed that the proposed network with fluctu-
ation can produce the time series for unknown input data.
We can see that the network with fluctuation of structure
operates more effectively than the network with additional
noise signals for generalization ability. Furthermore, the
noncoherent fluctuation gains better performance than the
coherent fluctuation for unknown input data. The detailed
investigation of the effect of different fluctuation methods
is our future work.
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