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Abstract

Synchronization is common phenomenon in the field of
natural science. It should be noted that mutual synchro-
nization phenomenon of oscillators gives various phase
states and there have been many investigations on these
phenomenon. In this study, we investigate synchronization
phenomena observed from three oscillators with the same
natural frequencies coupled by a resonator.

1. Introduction

In our surroundings, there are a lot of synchronous phe-
nomena. The synchronous luminescence of firefly group,
cell of heart producing pulses at equal intervals and revolu-
tion of the moon etc. are examples in which a synchronous
phenomenon is comprehensible. Similarly, synchroniza-
tion is common phenomenon in the field of natural science.

There have been many investigations of the mutual syn-
chronization of oscillators ([1]-[6] and therein). Moro and
one of the authors have confirmed thatN oscillators with
same natural frequencies mutually coupled by one resistor
give N-phase oscillations. Their system can take (N − 1)!
phase states, because of their system tends to minimize the
current through the coupling resister [7][8]. They thought
that these coupling structure and huge number of steady
states (for example, when their system take 479,001,600
steady states whenN = 13.), would be structural element
of cellular neural network or may be used as an extremely
large memory.

In this study, we observe synchronization of three oscil-
lators coupled by a resonator. Resonator is consisted of
parallel circuit of a capacitor and an inductor. Computer
simulations and circuit experiments are carried out to in-
vestigate the phenomenon in detail.

2. Circuit Model

The circuit model is shown in Fig. 1. Three oscillators
with the same natural frequencies are mutually coupled by
a resonator (LCCC circuit). The circuit equations are de-
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Figure 1: Circuit model.

scribed as Eq. (1).



C
dvk

dt
= −ik − ir (vk)

L
dik
dt

= vk − vCc (k = 1,2,3)

Cc
dvCc

dt
=
∑3

j=1 i j − iLc

Lc
diLc

dt
= vCc

(1)

whereir (vk) indicates thev − i characteristics of the non-
linear resistor, which is approximated by Eq. (2).

ir (vk) = −g1vk + g3v3
k. (2)

For circuit experiments, the nonlinear resister is realized as
shown in Fig. 2. Note that whenr is small, the nonlinearity
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Figure 2: Nonlinear resister.

is strong. By using the following variables and parameters,

vk =

√
g1

g3
xk, ik =

√
Cg1

Lg3
yk,

vCc =

√
g1

g3
X, iLc =

√
Cg1

Lg3
Y,

t =
√

LC τ, “ · ” = d
dτ
,

ε =

√
L
C

g1, β =
C
Cc
, γ =

L
Lc
,

(3)

the normalized circuit equations are given as follows.

ẋk = −yk + ε(xk − x3
k)

ẏk = xk − X (k = 1,2, 3)

Ẋ = β
(∑3

j=1 y j − Y
)

Ẏ = γX

(4)

3. Synchronization Phenomena forLC = L and CC = C

As shown in Fig. 3, we can observe three patterns of os-
cillations for the same parameter; in-phase oscillation and
two types of three-phase oscillations. Which synchronous
pattern was seen depends on the initial states. It is interest-
ing that three patterns can be observed for the same param-
eter and the oscillation frequency depends on the synchro-
nization patterns. Also, as Fig. 4, the circuit experimental
results show similar phenomena to the numerical results.

4. Synchronization Phenomena forLC , L or CC , C

To investigate the synchronization phenomenon when
the parameters of the coupling resonator are changed, one
of the parameters are fixed to 1.0, and the other parameter
(β or γ) is changed.
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Figure 3: Time waveform of in-phase oscillation and
two types of three-phase oscillations (numerical results).
ε=β=γ=1.0.

4.1. Synchronization whenγ is changed

First, the parameterβ is fixed to 1, and the parameterγ is
changed from 0.3 to 2.7. Three typical examples are shown
in Figs. 5(a), (b) and (c). For any values ofγ, the three
patterns of synchronization; in-phase oscillation and two
types of three-phase oscillations, are able to be confirmed.
We should note that the oscillation frequency of the three-
phase oscillations is almost the same for differentγ. On
the other hand, the frequency of the in-phase oscillation
decreases asγ decreases.

4.2. Synchronization whenβ is changed

Secondly, the parameterγ is fixed to 1, and the param-
eterβ is changed from 0.3 to 2.7. Two typical examples
are shown in Figs. 6(a) and (b). We can observe the three
patterns of synchronization as well as the previous case.
However, in this case, whenβ was changed, the oscillation
frequency of either in-phase oscillation or three-phase os-
cillation does not change.

Further, as shown in Figs. 7(a) and (b), we observed
some strange waveforms for some parameter values. For
Fig. 7(a), the waveform of the three-phase oscillations be-
comes distorted, while for Fig. 7(b) the waveform of the
in-phase oscillation becomes distorted.

It is very interesting that a variety of synchronization
phenomena can be seen for different coupling parameter
values.
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5. Conclusion

In this study, we have investigated the synchronization
phenomena in three oscillators coupled by a resonator.
From the coupled oscillators, we observed the in-phase os-
cillation and two types of three-phase oscillations. More-
over, we investigated the dependences of the oscillation
frequencies on the coupling parameter values. Our future
work is to investigate these synchronization phenomena in
more detail.
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(a)
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Figure 4: Time waveform of in-phase oscillation and
two types of three-phase oscillations (experimental re-
sults).L=Lc=10mH,C=Cc=68nF andr=250Ω. Horizontal
scale: 50µs/div. and Vertical scale: 1.0V/div.
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Figure 5: Numerical results forLC , L. ε=β=1.0.
(a)γ=2.7. (b)γ=1.2. (c)γ=0.3.
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Figure 6: Numerical results forCC , C. ε=γ=1.0.
(a)β=2.7. (b)β=0.6.
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Figure 7: Distorted waveforms observed forCC , C.
ε=γ=1.0. (a)β=2.1. (b)β=0.3.
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