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Abstract—In this study, we propose a nonlinear spring model
of Self-Organizing Map (SOM) arranged in 2-dimensional grid.
The neurons of the proposed model consists of N × M neurons
located at a rectangular grid and are connected by the nonlinear
spring. We investigate the chaotic behaviors of the model con-
nected in 2 × 2 and 5 × 5.

1. Introduction

The Self-Organizing Map (SOM) is a subtype of artifi-
cial neural networks [1]. It is trained using unsupervised
learning and is a model simplifying self-organization pro-
cess of the brain. However, SOM is still far away from
the realization of the brain mechanism. In order to realize
more powerful and more flexible mechanism, it is impor-
tant to propose new models of the brain mechanism and to
investigate their behaviors.
In our previous research, as the first step to realize a new

nonlinear spring model of SOM, we have proposed a sim-
ple one dimensional 2 and 3-neuron model connected by a
nonlinear spring [2], [3]. We have investigated its behavior
under a simple assumption where input vectors are given to
the model periodically.
In this study, since SOM arranged in 2-dimension is the

most well-used for applications of SOM, we propose N×M
SOM model connected by the nonlinear spring. The neu-
rons of the proposed model consists of N × M neurons
located at a rectangular grid. In the SOM algorithm, the
neuron nearer to the winner can be updated more signifi-
cantly. We represent a relationship between the winner and
its neighboring neurons. The input vectors are given to the
4 corners of the model, and the neuron nearest to the in-
put becomes a winner and is attracted to the input vector.
The other neurons always do not receive the direct effect
from the input vector and are influenced only by the restor-
ing force of the nonlinear spring from the neighboring neu-
rons. We investigate the chaotic behaviors of the model
connected in 2 × 2 and 5 × 5.

2. Nonlinear Spring Model of SOMArranged in N×M
In this study, we propose the nonlinear spring model of

SOM with a rectangular structure. The proposed model
consists of neurons located at N × M rectangular grid. The
model is shown in Fig. 1. All the neurons are assumed to
have same mass m and to be connected by the nonlinear
spring with the natural length l whose restoring force F
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Figure 1: Nonlinear spring model of SOM with N × M
rectangular shape.
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against the variation x is represented by F = −bx3 where b
denotes the stiffness of the spring.
Without loss of generality, we fix the position of the Neu-

ron 11, which is located at 1st low and 1st column, as the
origin of the x and y-coordinate. The state variables are the
positions of other neurons denoted by xi j and yi j and the
velocities of the neurons denoted by v̂xi j and v̂yi j .
Furthermore, we model the learning process of the SOM

by the external input vectors. In the SOM algorithm, a neu-
ron nearest to the input vector becomes a winner, and it and
its neighboring neurons are attracted to the input vector. In
this study, we concentrate on the case that the input vectors
are given to the 4 neurons of the model. Therefore, the neu-
ron nearest to the input, namely the Neuron 11, 1M, N1 or
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Figure 3: Input patterns. (a) Rotation A; Neuron 11, 1M,
NM and N1. (b) Rotation B; Neuron 11, 1M, N1 and NM.

NM, becomes the winner as Fig. 2, and it is attracted to the
input. Note that the other neurons do not receive a direct
effect from the input vector. We consider two kinds of in-
put patterns. One case is that the input vectors are given to
the corner of the model near the Neuron 11, 1M, NM and
N1 in rotation; called Rotation A as Fig. 3(a). Another case
is that they are given to the corner near Neuron 11, 1M, N1
and NM in rotation; called Rotation B as Fig. 3(b). In case
of Rotation A, the motion equation is described according
to the position of the neuron. For the all neurons,

{ ẋi j = vxi j
ẏi j = vyi j

(1)

For 4 corner neurons ; Neuron 11 as{
v̇x11 = −kvx11 + Fx11,12 + Fx11,21 − f (τ) cos θ
v̇y11 = −kvy11 + Fy11,12 + Fy11,21 − f (τ) sin θ,

(2)

Neuron 1M as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v̇x1M = −kvx1M − Fx1(M−1),1M + Fx1M,2m
+ f (τ − π2 ) cos θ

v̇y1M = −kvy1M − Fy1(M−1),1M + Fy1M,2m
− f (τ − π2 ) sin θ,

(3)

Neuron NM as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v̇xNM = −kvxNM − FxN(M−1),NM − Fx(N−1)M,NM
+ f (τ − π) cos θ

v̇yNM = −kvyNM − FyN(M−1),NM − Fy(N−1)M,NM
+ f (τ − π) sin θ,

(4)

Neuron N1 as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇xN1 = −kvxN1 + FxN1,n2 − Fx(N−1)1,N1
− f (τ − 3

2π) cos θ
v̇yN1 = −kvyN1 + FyN1,n2 − Fy(N−1)1,N1

+ f (τ − 3
2π) sin θ.

(5)

For the neurons at the bottom row,{
v̇x1 j = −kvx1 j − Fx1( j−1),1 j + Fx1 j,1( j+1) + Fx1 j,2 j
v̇y1 j = −kvy1 j − Fy1( j−1),1 j + Fy1 j,1( j+1) + Fy1 j,2 j. (6)

B
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Figure 4: Force by external input vector.

For neurons at the left column,
{
v̇xi1 = −kvxi1 + Fxi1,i2 − Fx(i−1)1,i1 + Fxi1,(i+1)1
v̇yi1 = −kvyi1 + Fyi1,i2 − Fy(i−1)1,i1 + Fyi1,(i+1)1. (7)

For neurons at the right column,
{
v̇xiM = −kvxiM − Fxi(N−1),iM − Fx(i−1)N,iM + FxiM,(i+1)N
v̇yiM = −kvyiM − Fyi(N−1),iM − Fy(i−1)N,iM + FyiM,(i+1)N .

(8)
For neurons at the top row,
{
v̇xN j = −kvxN j − FxN( j−1),N j + FxN j,N( j+1) − Fx(N−1) j,N j
v̇yN j = −kvyN j − FyN( j−1),N j + FyN j,N( j+1) − Fy(N−1) j,N j.

(9)
For the other neurons,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v̇xi j = −kvxi j − Fxi j,i( j−1) + Fxi( j+1),i j
− Fxi j,(i−1) j + Fx(i+1) j,i j

v̇yi j = −kvyi j − Fyi j,i( j−1) + Fyi( j+1),i j
− Fyi j,(i−1) j + Fy(i+1) j,i j,

(10)

where (i = 1, 2, · · · ,N), ( j = 1, 2, · · · ,M), x11 = 0, y11 = 0
and θ = π/4. We use following normalization parameters;

“ · ” = d
dτ , v̂xi j =

√
b
m vxi j , v̂yi j =

√
b
m vyi j ,

t =
√m
b τ, k = a√

bm
,

(11)

where a is the friction parameter. Fxi j,î ĵ and Fyi j,î ĵ are x
and y-component of the spring forces between the Neuron
i j and î ĵ as following equations;
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fxi j,î ĵ =
(√
((xî ĵ − xi j)2 + (yî ĵ − yi j)2 − l

)3
× xî ĵ−xi j√

((xî ĵ−xi j)2+(yî ĵ−yi j)2

Fyi j,î ĵ =
(√
((xî ĵ − xi j)2 + (yî ĵ − yi j)2 − l

)3
× yî ĵ−yi j√

((xî ĵ−xi j)2+(yî ĵ−yi j)2
.

(12)

f (τ) is the force by the external input vectors as

f (τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B sin(2τ), 2nπ ≤ τ ≤

(
2nπ + π2

)
(n = 0, 1, · · · )

0, otherwise
(13)

where t = 0 is the time when the input vector is given.
Because Eqs. (2)–(5) are for the case of Rotation A, we
need to change the phases for the other input pattern. The
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Figure 5: Projection of attractors onto x12–vx12 plane and
their Poincaré maps of 2 × 2 model. B = 15. l = 50.
(A) Rotation A. (B) Rotation B. (a) Attractors. (b) Poincaré
maps. (1) k = 0.45. (2) k = 0.38. (3) k = 0.31.

input vectors are given to 4 corners at fixed angle of π/4.
Therefore, one of 4 neurons nearest to the input becomes
the winner and is attracted to the input with the force as
Eq. (13). The other neurons always do not receive the direct
effect from the input vector and are influenced only by the
restoring force of the nonlinear spring from the neighboring
neurons. The shape of f (τ) is shown in Fig. 4.

3. Computer Simulation Results

We show some computer calculation results obtained by
using Runge-Kutta method with time step δt = 2π/500 for
Eq. (1)-(10). We define the Poincaré section as τ = 2nπ.
We set the initial states of the positions to its own physical
location on the 2-D grid as xi j(0) = ( j − 1)l and yi j(0) =
(i − 1)l. The initial states of the velocities are set to 0.
3.1. 2 × 2Model
First, we consider the 2× 2 model (N = M = 2) with the

two cases of the input methods. The projections of attrac-
tors onto x12–vx12 and their Poincaré maps for both cases
are shown in Figs. 5(A) and (B), respectively. As Fig. 5(A),
two-periodic orbit (1) bifurcates to four-periodic orbit (2)
and chaos (3). By decreasing k, chaos grows more com-
plex. Meanwhile, in the case of Rotation B as Fig. 5(B),
we can observe similar phenomena for the same parame-
ters. These results mean the property of the primary SOM
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Figure 6: Bifurcation diagrams of model with 2×2 neurons
for fixed B = 15 and l = 50 by changing k from 0.3 to 0.5.
(a) Rotation A. (b) Rotation B.
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Figure 7: Lyapunov exponents. B = 15, l = 50, k = 0.36.
(a) Rotation A. (b) Rotation B.

which the learning results are hardly influenced by chang-
ing the order of giving the input vectors.
Moreover, we made one-parameter bifurcation diagram

of the model with 4-neuron by increasing k gradually for
fixed B = 15 and l = 50. Figures 6(a) and (b) show the
cases of the input vector given by Rotation A and Rotation
B, respectively. By changing k from 0.3 to 0.5 as Fig. 6(a),
we can confirm the widely chaos region, and it is clear that
the chaotic behavior becomes weak for larger k value in
both cases. From Fig. 6(a), we can observe that the chaos
region for 0.3 < k < 0.335, some periodic windows and the
period-doubling bifurcation correspond to Figs. 5(A1) and
(A2). On the other hand, as Fig. 6(b), somewhat different
bifurcations are observed in the case that input vectors are
given by Rotation B. It means that more complex chaos
than by Rotation A is generated by Rotation B.
Lyapunov exponents for case of Rotation A and Rota-

tion B are shown in Fig. 7. Five Lyapunov exponents take
positive values in both cases, namely, the neurons oscillate
chaotically. The largest Lyapunov exponent is λ1 = 0.020
and 0.229 for Rotation A and Rotation B, respectively.
Therefore, the nonlinear spring model by Rotation B can
be said to generate more complex chaos than Rotation A.

3.2. 5 × 5Model
Next, we consider the nonlinear spring model with 5 × 5

neurons (N = M = 5) in the case of the input vectors are
given by Rotation A. We investigate the chaotic behavior
of the model with taking notice of the relationship between
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Figure 10: Projection of attractors onto x53–vx53 plane and their Poincaré maps of 5 × 5 model. Fixed parameters are
k = 0.15 and l = 2. Input vectors are given by Rotation A. (a) Attractors. (b) Poincaré maps. (1) B = 0.7. (2) B = 0.75.
(3) B = 0.885. (4) B = 0.8864. (5) B = 0.887. (6) B = 0.888. (7) B = 0.89.
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Figure 8: Attractors onto x33 vs (xi j − ( j− 3)l) for k = 0.15
and l = 2. (a) B = 0.6. (b) B = 0.7. (c) B = 0.9.

neurons. Figure 8 shows the projection of attractors of re-
spective positions as xi j based on the position of the center
Neuron 33 as x33. For B = 0.6 as Fig. 8(a), the neurons are
oscillating similarly based on the Neuron 33. In fact, the at-
tractors of 1-neighbor of the Neuron 33, namely, onto x33–
x32, x33–x23, x33–x34 and x33–x43 plane, are similar shapes.
By increasing B as Figs. 8(b) and (c), the respective neu-
rons make different behaviors. For B = 0.9, we can observe
that the symmetries of behaviors are broken completely and
all the neurons behave chaotically.
Figure 9 shows the Poincaré maps of the respective neu-

rons onto xi j–vxi j plane. Two-periodic orbit (a) bifurcates
to torus (b). As B increases, the chaos (c) is observed.
In order to investigate the growth process from the torus

to the chaos, we observe the behaviors changing B more
closely as shown in Fig. 10. We can see the torus as (1)
and (2). At B = 0.885, 8-periodic state (3) appears and the
folded torus appear as (4). As B increases further, we can
observe the torus breakdown. Poincaré map becomes thick
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Figure 9: Poincaré maps onto xi j–vxi j plane for k = 0.15
and l = 2. (a) B = 0.6. (b) B = 0.7. (c) B = 0.9.

and chaos generations are confirmed visually (5)-(7).

4. Conclusions

We have proposed the SOM model whose neurons are
arranged in 2-dimensional array and connected by the non-
linear spring. We have obtained the similar behaviors of
the model connected in 2 × 2 for difference input patterns.
Furthermore, we have considered the model arranged 5× 5
array and have investigated the chaotic behaviors with tak-
ing notice of the relationship between neurons.

References
[1] T. Kohonen, Self-organizing Maps, Berlin, Springer, 1995.
[2] H. Matsushita and Y. Nishio, “Nonlinear Spring Model of Self-

Organizing Map and its Chaotic Behavior,” Proc. of ICCCAS’07,
vol. 2, pp. 1099–1102, 2007.

[3] H. Matsushita and Y. Nishio, “Three-Neuron Nonlinear SpringModel
of Self-Organizing Map,” Proc. of NCSP’08, pp. 315–318, 2008.

[4] Y. Ueda, The Road to Chaos, Santa Cruz, Aerial Press, 1992.

- 284 -


