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Abstract—In this study, we investigate synchronization
of parametrically excited van der Pol oscillators. In the
case of two subcircuits, we confirm that the two subcir-
cuits are synchronized at the opposite-phase without phase
difference in the functions corresponding to the paramet-
ric excitation. In the case of three subcircuits, we confirm
self-switching phenomenon of synchronization states.

1. Introduction

Synchronization is one of the fundamental phenomena
in nature and it is observed over the various fields. Stud-
ies on synchronization phenomena of coupled oscillators
are extensively carried out in various fields, physics [1], bi-
ology [2], engineering and so on. We consider that it is
important to investigate the synchronization phenomena of
coupled oscillators for the future engineering application.
The coupled van der Pol oscillator is one of coupled os-
cillators, and synchronization generated in the system can
model certain synchronization of natural rhythm phenom-
ena. The van der Pol oscillator is studied well because it
is expressed in simple circuit. Parametric excitation circuit
is one of resonant circuits, and it is important to investigate
various nonlinear phenomena of the parametric excitation
circuits for future engineering applications. In simple oscil-
lator including parametric excitation, Ref. [3] reports that
the almost periodic oscillation occurs if nonlinear inductor
has saturation characteristic. Additionally the occurrence
of chaos is referenced in Ref. [4] and [5].

In this study, we investigate synchronization of paramet-
rically excited van der Pol oscillators. By carrying out
computer calculations for two or three subcircuits case, we
confirm that various kinds of synchronization phenomena
of chaos are observed. In the case of two subcircuits, the
opposite-phase synchronization is observed. In the case of
three subcircuits, self-switching phenomenon of synchro-
nization states is observed.

2. Circuit model

The circuit model used in this study is shown in Fig 1.
In our system n same parametrically excited van der Pol
oscillators are coupled by one resistor R. The circuit in-
cludes a time-varying inductor L whose characteristics are

(a) Parametrically excited van der Pol oscillators
coupled by a resistor.

(b) Time-varying inductor.

Figure 1: Circuit model.

given as the following equation. The time-varying inductor
is shown as Fig. 1(b).

L = L0γ(t). (1)

γ(τ) is expressed in a rectangular wave as shown in Fig. 2,
and its amplitude and angular frequency are termed α and
ω, respectively. The v − i characteristics of the nonlinear
resistor are approximated by the following equation.

id = −g1vk + g3vk. (2)

By changing the variables and the parameters,
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(3)

the normalized circuit equations are given by the following
equations.
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Figure 2: Function relating to parametrically excitation.

Figure 3: One-parameter bifurcation diagram of isolated
subcircuit. Horizontal axis: x. Vertical axis: ε. α = 0.95
and ω = 1.50.



dxk

dτ
= ε(xk − x3

k) − yk

dyk

dτ
=

1
γ(τ)

xk − δ
n∑

j=1

y j.
(4)

Figure 3 shows the bifurcation diagram observed from
the isolated subcircuit. When parameter ε changes, pe-
riodic attractors, quasi-periodic attractors and chaotic at-
tractors are confirmed from the isolated subcircuit. Fig-
ure 4 shows examples of chaotic attractors and Poincaré
maps observed from the isolated subcircuit. We define the
Poincaré section as ωτ = 2nπ.

(a)

(b)
Figure 4: Examples of chaotic attractors and Poincaré maps
observed from subcircuit. α = 0.95 and ω = 1.50. (a)
ε = 1.0. (b) ε = 1.5.

3. Two subcircuits case

In this section, we consider the case of n = 2. Only two
parametrically excited van der Pol oscillators are coupled
by one resistor. First, fix ε = 1.50, α = 0.95, ω = 1.50 and
δ = 0.80 and vary phase difference of the rectangular wave.
Two subcircuits generate chaos for these parameter values.

(a)

(b)

(c)
(1) (2) (3)

Figure 5: Attractors and phase differences. ε = 1.50,
α = 0.95, ω = 1.50 and δ = 0.80. Phase difference of
rectangular wave: (a) 0, (b) π/20 and (c) π/4. (1) x1 versus
y1. (2) x2 versus y2. (3) y1 versus y2.

Figure 5 shows computer calculated results. As shown in
Fig. 5(a), when there is not phase difference, two subcir-
cuits are synchronized at the opposite-phase completely.
However, as phase difference increases, two circuits be-
come out of synchronization (see Figs. 5(b) and (c)).

(a)

(b)

(c)
(1) (2) (3)

Figure 6: Attractors and phase differences. ε = 1.35,
α = 0.95, ω = 1.50 and δ = 0.80. Phase difference of
rectangular wave: (a) 0, (b) π/20 and (c) π/4. (1) x1 versus
y1. (2) x2 versus y2. (3) y1 versus y2.

Second, fix ε = 1.35, α = 0.95, ω = 1.50 and δ = 0.80
and vary phase difference of the rectangular wave. Two
subcircuits generate periodic attractor for there parameter
values. Figure 6 shows computer calculated results. In
the same way, when there is not phase difference, two sub-
circuits are synchronized at the opposite-phase completely
as shown in Fig. 6(a). And as phase difference increases,
two circuits become out of synchronization (see Figs. 6(b),
(c) and (d)). Additionally, chaotic attractor is obtained as
shown in Fig. 6(b).
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4. Three subcircuits case

In this section, we consider the case of n = 3. Figure 7
shows computer calculated results for ε = 1.50, α = 0.95,
ω = 1.50, δ = 0.80 and there is not phase difference of the
rectangular wave.

(a)

(b)

(c)

Figure 7: Attractors and phase differences. ε = 1.50, α =

0.95, ω = 1.50 and δ = 0.80.

In this case, self-switching phenomenon of synchroniza-
tions is observed. In Fig. 7, the upper line shows attrac-
tors of the subcircuits and the lower line shows phase dif-
ferences between subcircuits. And the states of synchro-
nization (a), (b) and (c) switch with time. Figure 8 shows
time series of self-switching phenomenon of synchroniza-
tions. As shown in Fig. 7(a) and Fig. 8(a), subcircuit 2
synchronizes with other two subcircuits at opposite-phase.
However, as time advances, the amplitude of either sub-
circuit 1 or subcircuit 3 becomes small (it is subcircuit
3 in Fig. 8(2)), and the pattern of synchronization finally
changes to another pattern. After the switching, the other
subcircuit which synchronized to subcircuit 2 at opposite-
phase becomes to synchronizes with the other two sub-
circuits at opposite-phase as shown in the Fig 7(b) and
Fig. 8(b). Furthermore, as time passes next switchings oc-
cur in a chaotic way.

Switching speed is related to the coupling parameter
δ. Figure 9 shows the mean value and the standard de-
viation of the sojourn time of self-switching. Figure 10

(1)

(2)

Figure 8: time series of self-switching. ε = 1.50, α = 0.95
and ω = 1.50. (1)δ = 0.80. (2)δ = 20.00.

shows time series of amplitude difference between subcir-
cuits. In Fig. 10, large amplitude shows opposite-phase
synchronization. If the coupling parameter δ is small (see
Fig. 10(a)), switching speed is fast. As the coupling pa-
rameter δ increases, switching speed becomes slow (see
Fig. 10(b)). Additionally, self-switching phenomenon of
synchronizations is also confirmed when the isolated sub-
circuits generate periodic attractors for ε = 1.35. However,
when the parameter ε is small as ε = 1.00, self-switching
phenomenon of synchronizations is not observed. And a
pair of subcircuits which depend on initial values are syn-
chronized at opposite-phase. Thus, generation of the self-
switching phenomenon of synchronizations is related to the
parameter ε, and its switching speed is related to the cou-
pling parameter δ.

From the preceding section, two subcircuits are synchro-
nized at opposite-phase for no phase difference of the rect-
angular wave. Thus, the effect of parametric excitation is
strong, and opposite-phase synchronization is stable for no
phase difference of the rectangular wave. However in case
of three subcircuits, there is no stable pair of subcircuits be-
cause the number of circuit is odd. So self-switching phe-
nomena of synchronization occurs. From these, we con-
sider that interesting self-switching phenomena of synchro-
nization occur when the number of subcircuit is odd (for
example the number of subcircuits is 5 or 7).

Second, we consider the case that there is phase differ-
ence of the rectangular wave. Fix ε = 1.50, α = 0.95,
ω = 1.50 and δ = 0.30, and phase shifts of the rectangu-
lar wave of the subcircuits to 2π/3 and 4π/3. In this case,
self-switching phenomenon of synchronizations is not ob-
served. Figure 11 shows one of three different types of
synchronization states. These three synchronization states
can be obtained by giving different pattern of phase shift of
the rectangular wave. Two of the three subcircuits are syn-
chronized at the opposite-phase. A pair of synchronized
subcircuits is decided by the sequence of phase shift of the
rectangular wave.

- 130 -



(a)

(b)

Figure 9: Sojourn time of self-swiching. Horizontal axis:
δ. Vertical axis: period. ε = 1.50, α = 0.95 and ω = 1.50.
(a) Mean value. (b) Standard deviation.

(a)

(b)
Figure 10: Time series. ε = 1.50, α = 0.95 and ω = 1.50.
(a) δ = 0.80. (b) δ = 20.0.

5. Conclusions

In this study, we investigated synchronization of para-
metrically excited van der Pol oscillators. By carrying out
computer calculations for two or three subcircuits case, we
confirmed that various kinds of synchronization phenom-
ena of chaos were observed. In the case of two subcircuits,
we confirmed that synchronization phenomena are related
to phase difference of the functions that corresponding to
the parametric excitation. Then the two subcircuits are syn-
chronized at the opposite-phase. In the case of three sub-
circuits, three coupling van der Pol oscillators which do not
include parametric excitation are synchronized at the three-
phase. However, three coupling parametric excited van der
Pol oscillators generate self-switching phenomenon of syn-
chronization states when there is not phase difference of the

Figure 11: Attractors, phase differences and time series.
ε = 1.50, α = 0.95, ω = 1.50 and δ = 0.30. Phase differ-
ences of rectangular wave are 2π/3 and 4π/3.

functions corresponding to the parametric excitation. On
the other hand, when there is phase difference, two of the
three subcircuits are synchronized at the opposite-phase.
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