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I. INTRODUCTION

Research on digital communications systems using chaos
becomes a hot topic [1]− [8]. Especially, it is attracted to
develop noncoherent detection systems which do not need to
recover basis signals (unmodulated carries) at the receiver. In
this study, we focus attention on the optimal receiver which is
one of typical noncoherent systems [2]. The optimal receiver
performs an optimal detection by using the probability density
function (PDF) between the received signals and the same
chaotic map of the transmitting side. However, the optimal
receiver suffers from a computational complexity due to the
large chaotic sequence length. Thus, it is important to develop
a receiver with performance equivalent to the optimal receiver
using different algorithms, i.e., a suboptimal receiver.

In our previous research, we proposed the suboptimal re-
ceiver using the shortest distance approximation [9]. Instead
of calculating the PDF, the proposed suboptimal receiver
approximates the PDFs by calculating the shortest distance
between the received signals and the chaotic map. As results
of the computer simulations, we confirmed the validity of
the proposed suboptimal receiver as an approximation method
of the optimal receiver. However, our previous study did not
sufficiently investigate the performance and the computational
cost of the suboptimal receiver.

In this study, we observe computational costs of the opti-
mal and our suboptimal receiver to evaluate the accuracy of
calculation and the processing time.

II. SYSTEM OVERVIEW

We consider the discrete-time binary CSK communication
system, as shown in Fig. 1. This system consists of a trans-
mitter, a channel and a receiver.

In the transmitter, a chaotic sequence is generated by a
chaotic map. In this study, the transmitter uses a skew tent
map which is one of simple chaotic maps, as shown in Fig.
2(a), and it is described by Eq. (1)
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Fig. 1. Block diagram of discrete-time binary CSK
communication system.
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Fig. 2. Chaos Shift Keying.

where a denotes a position of the top of the skew tent map.
The transmitter can generate the different chaotic sequence
for every symbol by changing an initial value of chaos. The
information symbol is modulated by CSK.

CSK is a digital modulation system using chaos. When
the transmitter generates the signals, it is used that chaotic
sequences generated by different chaotic maps depending on
the value of an information symbol. If the information symbol
“1” is sent, Eq. (1) is used (Fig. 2(a)), and if “0” is sent, the
reversed function of Eq. (1) is used (Fig. 2(b)). To transmit a
1-bit information, N chaotic signals are generated, where N
is chaotic sequence length. Therefore the transmitted signal is
denoted by a vector S = (S1 S2 · · · SN ).

In the channel, we assume the additive white Gaussian noise
(AWGN) with a distribution of mean zero and variance N0 =
σ2. AWGN channel is well known as the most popular and
basic channel model. Here, the noise signals is denoted by the
noise vector n = (n1 n2 · · · nN ). Thus, the received signals
block is given by R = (R1 R2 · · · RN ) = S + n.

The receiver recovers the transmitted signals from the re-
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ceived signals and demodulates the information symbol. Since
we consider a noncoherent receiver, the receiver memorizes the
chaotic map used for the modulation at the transmitter. How-
ever, the receiver never knows the initial value of chaos and
the information symbol in the transmitter. Before explaining
our receiving method, we introduce the optimal receiver and
the suboptimal receiver.

A. Optimal Receiver

The optimal receiver was proposed by Hasler and Schim-
ming [2]. This receiver selects the symbol q using the a
posteriori probability when the received signals block R is
received.

q̃ = arg max
q

Prob(q is sent | R) (2)

However, since the a posteriori probability is not convenient
to calculate, we convert them using Bayes’ rule, i.e.

Prob(q is sent | R) =
p(R| q is sent) × Prob(q is sent)

p(R)
, (3)

where p(.) is the probability density function (PDF). Here,
Prob(“1” is sent) and Prob(“0” is sent) are 1/2. In addition,
since p(R) is independent of q, Eq. (2) can be written as

q̃ = arg max
q

p(R| q is sent) . (4)

As an example, we explain the case of N = 2. In this
study, it is assumed that the initial value S1 of each chaotic
signal block S is chosen randomly in accordance with the
natural invariant probability density of f and −f , where f is
the function of the skew tent map. In addition, since the natural
invariant probability density of f and −f is the constant
1/2 in the interval [0, 1], the PDF p(R| “+1”is sent) and
p(R| “0”is sent) are also equal to 1/2 and limited to [0, 1],
i.e.

p(R| “1”is sent) =
1

2πσ2

∫ +1

−1

e−
(R1−S1)2+(R2−f(S1))2

2σ2 dS1 (5)

p(R| “0”is sent) =
1

2πσ2

∫ +1

−1

e−
(R1−S1)2+(R2+f(S1))2

2σ2 dS1 (6)

where σ2 is the variance of noise. Finally the optimal receiver
decides the decoded symbol as 1 (or 0) for p(R| “1”is sent) >
p(R| “0”is sent) (or p(R| “1”is sent) < p(R| “0”is sent)).

As mentioned above, two error functions need to be com-
puted for two PDFs in the case of N = 2. In other words,
to decide the decoded symbol, the optimal receiver has to
calculate a total of four PDFs. Because the total number of
the PDFs is given as 2N , the implementation of the optimal
receiver becomes quite difficult for large N .

To implement the optimal receiving algorithm with large
N , the PDF of the optimal receiver is calculated by using
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Fig. 3. Proposed detection method.
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the numerical integration method [5]. By applying numerical
integration, Eqs. (5) and (6) are rewritten by

p(R| “1”is sent)

= lim
L→∞

1
2(2πσ2)N/2

L∑
l=1

e−

∑N

i=1
(Ri−f(i−1)(xl))

2

2σ2 δxl (7)

p(R| “0”is sent)

= lim
L→∞

1
2(2πσ2)N/2

L∑
l=1

e−

∑N

i=1
(Ri−g(i−1)(xl))

2

2σ2 δxl (8)

where δxl = 2/L, xl = −1 + (k − 1)δxk, f (j)(α) denotes
the iteration of the function f and j times with the initial
condition α (i.e. f (0)(α) = α), g = −f . As one can see,
the calculation accuracy of the PDF by using the numerical
integration method depends on the parameter L. Although the
calculation accuracy improves as L increases, the calculation
time also increases.

B. Suboptimal Receiver

The suboptimal receiver is a receiving system to implement
the optimal receiver using a different algorithm from the
optimal receiver. Note that the detection characteristic of the
suboptimal receiver can not be superior to the optimal receiver.
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III. SHORTEST DISTANCE APPROXIMATION METHOD

In this section, we explain our suboptimal receiver using a
shortest distance approximation [9]. As described in Sec. 2,
the core of the optimal receiver’s problems is the complexity
of the calculation of the PDF due to large N . In other words,
to realize a suboptimal receiver, it is necessary to simplify the
detection algorithm. In our receiving method, instead of calcu-
lating the PDF between received signals and the chaotic map,
our suboptimal receiver approximates the PDF by calculating a
shortest distance between the received signals and the chaotic
map and performs a detection of information. Concretely,
the receiver calculates the shortest distance between received
signals and the map in the Nd-dimensional space using Nd

successive received signals (Nd : 2, 3, · · ·).
As an example, we explain the case of Nd = 3. Figure 3

shows the 3-dimensional space of the skew tent map whose
coordinates correspond to the three successive received signals
R = (Rk, Rk+1, Rk+2) where k = 1, 2, · · · , N −2. To decide
which map is closer to the point R in the 3-dimensional space
in Fig. 3, the shortest distance between the point and the map
has to be calculated. Therefore, the receiver can calculate the
shortest distance using the scalar product of the vector. Any
two points of P0 = (x0, y0, z0) and P1 = (x1, y1, z1) are
chosen from each straight line in the space of Fig. 3, as shown
in Fig. 4.

Using Fig. 4, we can calculate the point with the shortest
distance P = (X,Y, Z) and the shortest distance D by the
following equations.

P = (X,Y, Z) = (u · v0)u + P0 (9)

D = ||P − R||

=
√

(X − Rk)2 + (Y − Rk+1)
2 + (Z − Rk+2)

2

(10)

where

Unit vector u =
P1 − P0

||P1 − P0||
(11)

v0 = R − P0 . (12)

Note that if the point is outside the cube, we calculate the
distance between the point and the nearest edges of the maps.

For the 3-dimensional case, there are four straight lines in
the space. Therefore, the minimum value in four distances is
chosen as the shortest distance D1 for symbol “1”. In the same
way, D of symbol “0” is chosen as D0. the receiver calculates
both of D1 and D0 for all k and find their summations

∑
D1

and
∑

D0. Finally, we decide the decoded symbol as 1 (or 0)
for

∑
D1 <

∑
D0 (or

∑
D1 >

∑
D0).

The calculation of the shortest distance can be extended to
Nd-dimensional space for Nd ≥ 4.

IV. INVESTIGATION OF COMPUTING COST

To investigate computational costs of the optimal and our
suboptimal receiver, we carry out computer simulations with
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Fig. 5. BER performance (Comparison of optimal receiver and our subop-
timal receiver).

following simulation conditions. On the transmitting side,
100,000 symbols are transmitted using chaotic sequences with
different initial values. Here, the parameter of the skew tent
map is fixed as a = 0.05. Also, as the chaotic sequence
length, N = 4 and 8 are used. The receiver calculates a BER
performance under AWGN and a computational time spent to
decide all decoded symbols. To compare the performances of
different dimensional spaces to calculate the shortest distance,
we use 4-dimensional space (4-D) and 8-dimensional space
(8-D). Also, to compare the performance, the optimal receiver
is changed L from 2N−1 and is carried out the simulation.
These simulations are carried out using PC implemented CPU:
Core2Duo 2.4GHz, RAM2GB.

First of all, to confirm the validity of the our suboptimal
receiver as an approximation method of the optimal receiver,
we show the BER comparison of the optimal and our subop-
timal receiver in Fig 5. Here, to simulate the optimal receiver,
we apply the numerical integration method (Eqs. (7) and (8))
with L = 2000. It can be observed that the curve of the our
suboptimal receiver corresponds that of the optimal receiver
when N = Nd-dimension. From this result, we consider that
our method using the shortest distance in Nd-dimensional
space becomes almost identical with the optimal receiver for
the case that the dimension Nd is equal to the length of the
chaotic sequence N .

Next, we compare a computational cost of our method with
that of the optimal receiver. Tables I and II show the BER
performance and the actual computational time. Here, Eb/N0

is fixed as 13dB. From these tables, we can see that the
BER performances of the optimal receiver and our method
are almost the same when L = 3 × 2N−1. Thus, to obtain
the calculation accuracy of the optimal receiver, the minimum
required intervals of L needs 3 × 2N−1. In addition, the
computational time of the optimal receiver with the minimum
required interval spends 4 ∼ 6 times of that of our method.
From these results, we expect that the computational cost of
our method is lower than that of the optimal receiver using
the numerical integration method, even if the accuracy of the
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TABLE I

COMPUTATIONAL TIME AND BER PERFORMANCE WITH N = Nd = 4 (106SYMBOLS, Eb/N0 = 13DB)

Optimal Receiver Our Suboptimal Receiver
L Number of Straight Line

2N−1 = 8 2 × 2N−1 = 16 3 × 2N−1 = 32 2Nd−1 = 8

Computational Time [sec] 1.04 1.72 3.23 0.74
BER 1.18 × 10−1 2.82 × 10−2 1.61 × 10−2 1.57 × 10−2

TABLE II

COMPUTATIONAL TIME AND BER PERFORMANCE WITH N = Nd = 8 (106SYMBOLS, Eb/N0 = 13DB)

Optimal Receiver Our Suboptimal Receiver
L Number of Straight Line

2N−1 = 128 2 × 2N−1 = 256 3 × 2N−1 = 512 2Nd−1 = 128

Computational Time [sec] 21.06 44.23 90.85 14.28
BER 1.74 × 10−2 1.26 × 10−2 1.15 × 10−2 1.15 × 10−2

optimal receiver with N = 16 and 32 is obtained by increasing
the computer performance. Therefore, it can be said that the
lower computational cost is advantage of our method.

V. CONCLUSIONS

In this study, to evaluate the accuracy of calculation and
the processing time, we have observed computational costs
of the optimal and our suboptimal receiver As the simulation
results, we have confirmed that the lower computational cost
is advantage of our method.
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