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Abstract— The Self-Organizing Map (SOM) is a famous

algorithm for the unsupervised learning and visualization intro-

duced by Teuvo Kohonen. This study proposes the Lazy Self-

Organizing Map (LSOM) algorithm which reflects the world of

worker ants. In LSOM, three kinds of neurons exist: worker

neurons, lazy neurons and indecisive neurons. We apply LSOM

to various input data set and confirm that LSOM can obtain a

more effective map reflecting the distribution state of the input

data than the conventional SOM.

I. INTRODUCTION

C
LUSTERING is one of typical analysis techniques and

is studied for many applications, such as statement,

pattern recognition, data mining. In recent years, the Self-

Organizing Map (SOM) [1] has attracted attention for the

study on clustering [2]. SOM is an unsupervised neural

network introduced by Kohonen in 1982 and is a simplified

model of the self-organization process of the brain. SOM

can classify input data according to similarities, which are

obtained by the distance between neurons, and is applied to

wide fields of data classifications. In the learning algorithm

of SOM, a winner neuron and its neighboring neurons are

updated. A learning rate, which denotes the updating degree

of neurons, decreases with time, and the neuron nearer to

the winner is significantly updated. This means that all the

neurons can be updated, in so far as it is near to the input

data or the winner neuron. In other words, all the neurons of

the conventional SOM are good worker neurons.

Meanwhile, it is believed that God does not create an un-

necessary thing even if it seems to useless. There is a report

that 20 percent of worker ants are “lazy” (as Fig. 1) [3].

These ants keep still or stay around their nests. However, the

researchers think that the lazy ants have certain role. Because,

in another experiment, the ants group, which includes the

lazy ants at food collections, can collect more foods than

the group which includes only the worker ants. The worker

ants can collect food efficiently, however, it may be hard to

find new foods just because they consider the efficiency. In

addition, it is thought that chances of finding foods increase

because the lazy ants maunder without working. In other

words, we can obtain better results in the case that useless

things exist than only excellent things.

In this study, we propose a new type of SOM algorithm,

which is called Lazy SOM (LSOM) algorithm. The important

feature of LSOM is that three kinds of neurons exist; worker
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Fig. 1. World of worker ants. Some worker ants are “lazy”.

neurons, lazy neurons, which do not work and indecisive

neurons which are the neighborhoods of the lazy neurons.

The learning rate of the lazy neurons is smaller than the ones

of the worker neurons. The learning rate of the indecisive

neurons become small due to the lazy neurons. We can say

that LSOM carries out learning reflecting the world of worker

ants.

We explain the learning algorithm of LSOM in detail in

Section III. In Section IV, we apply LSOM to 2-dimensional

and 3-dimensional input data, which have some clustering

problems. Furthermore, we explain the learning behaviors

of LSOM in detail. Learning performances are evaluated

both visually and quantitatively using two measurements

and are compared with the conventional SOM. We confirm

that LSOM can obtain a more effective map reflecting the

distribution state of the input data than the conventional

SOM.

II. SELF-ORGANIZING MAP (SOM)

SOM has a two-layer structure of the input layer and the

competitive layer. In the input layer, there are d-dimensional

input vectors xj = (xj1, xj2, · · · , xjd) (j = 1, 2, · · · , N).
In the competitive layer, M neurons are arranged on the 2-

dimensional grid. Each neuron has a weight vectors wi =
(wi1, wi2, · · · , wid) (i = 1, 2, · · · , M) with the same dimen-

sion as the input vector. The range of the input vector is

assumed to be between 0 and 1. The initial values of all the

weight vectors are given between 0 and 1 at random.
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Indecisive neurons increase 

with time !!

Worker neuron

Indecisive neuron

Lazy neuron

Fig. 2. LSOM contains three kinds of neurons: worker neuron, lazy neuron

and indecisive neuron. Each number denotes neighborhood distance between
lazy neuron and each neuron.

(SOM1) We input an input vector xj to all the neurons at

same time in parallel.

(SOM2) We find a winner neuron by calculating the dis-

tances between the input vector xj and the weight vector

wi of neuron i. The winner neuron c is the neuron with the

weight vector nearest to the input vector xj ;

c = argmin
i
{‖wi − xj‖}, (1)

where ‖ · ‖ is the distance measure, in this study, we use

Euclidean distance.

(SOM3) The weight vector of all the neurons are updated as

wi(t + 1) = wi(t) + hc,i(t)(xj − wi(t)), (2)

where t is the learning step. hc,i(t) is called the neighborhood

function and is described as

hc,i(t) = α(t) exp

(
−‖ri − rc‖2

2σ2(t)

)
, (3)

where ri and rc are the vectorial locations on the display

grid, α(t) is called the learning rate, and σ(t) corresponds

to the widths of the neighborhood function. Both α(t) and

σ(t) decrease monotonically with time, in this study, we use

the following;

α(t) = α(0)

(
1 − t

T

)
, σ(t) = σ(0)

(
1 − t

T

)
, (4)

where T is the maximum number of the learning.

(SOM4) The steps from (SOM1) to (SOM3) are repeated for

all the input data.

III. LAZY SELF-ORGANIZING MAP (LSOM)

In this study, we propose Lazy SOM (LSOM). The im-

portant feature of LSOM is that three kinds of neurons exist

(as Fig. 2): worker neurons, lazy neurons, which do not

work, and indecisive neurons which are neighborhoods of

the lazy neuron. The updating degree of the lazy neurons is
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Fig. 3. Flowchart of LSOM learning.

smaller than the ones of the worker neurons. Furthermore,

the updating degrees of the lazy neurons’ neighbors become

small due to the lazy neuron, hence the name is “indecisive”.

The lazy neuron becomes the worker neuron whenever it

becomes the winner, and another neuron becomes lazy. The

number of the indecisive neuron increases with time.

A. Learning Algorithm

We explain the learning algorithm of LSOM in detail. A

flowchart of the learning algorithm is shown in Fig. 3. In

LSOM, M neurons are arranged as a regular 2-dimensional

grid. p neurons are classified into a set of the lazy neurons

Slazy at random.

(LSOM1) An input data xj is inputted to all the neurons at

the same time in parallel.

(LSOM2) We find the winner neuron c according to Eq. (1).

If c ∈ Slazy, we perform (LSOM3). If not, we perform

(LSOM4).

(LSOM3) The lazy neuron, which is the winner c, is ex-
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Fig. 4. Lazy neuron becomes worker neuron whenever it becomes winner, and another neuron becomes lazy.

cluded from the set of the lazy neuron Slazy, and a neuron

f , which is farthest from the input data xj and is not in

Slazy, is selected to become a member of Slazy;

f = arg max
i

{‖wi − xj‖}, i �∈ Slazy. (5)

In other words, the lazy neuron becomes worker if it becomes

the winner c, and another neuron f becomes lazy shown as

Fig. 4.

(LSOM4) We find the indecisive neurons. A set of the

indecisive neurons Nlazy are the neighborhoods of each lazy

neuron l in Slazy.

Nlazy = {i | ‖ri − rl‖2 ≤ D(t),

i �= c, i �∈ Slazy, l ∈ Slazy},
(6)

where ||ri − rl|| is the neighborhood distance between map

nodes i and l on the map grid, and D(t) corresponds to

the neighborhood size, namely the quantity of the indecisive

neurons. D(t) increases with time according to the following

equation;

D(t) =

[
Dmax

t

T

]
, (7)

where [ ] denotes the Gauss’ notation and Dmax is a fixed

parameter deciding the max value of D(t).
(LSOM5) The weight vectors of all the neurons are updated

as

wi(t + 1) = wi(t) + hLc,i(t)(xj − wi(t)), (8)

where the function hLc,i(t) is the neighborhood function of

LSOM and is described as

hLc,i(t) = α exp

(
−‖ri − rc‖2

2σ2(t)

)
, (9)

where α is the learning rate of LSOM and is decided by each

neuron’s character;

α =

⎧⎨
⎩

αlazy, if i = l, l ∈ Slazy

αN, if i ∈ Nlazy

αw, otherwise,
(10)

where αw is the learning rate of the worker neurons, αlazy is

the learning rate of the lazy neurons, and αN is the learning

rate of the indecisive neurons, namely αlazy ≤ αN ≤ αw.

(LSOM6) The steps from (LSOM1) to (LSOM5) are re-

peated for all the input data.

IV. EXPERIMENTAL RESULTS

A. For Target data

We consider a 2-dimensional input data: Target data set

shown in Fig. 5(a). This data contains 770 points which has

a clustering problem of outliers [4]. Both the conventional

SOM and the proposed LSOM have 225 neurons (15 × 15)
each. p=20 neurons, namely 20% of the neurons, are classi-

fied into a set of the lazy neurons. We repeat the learning 20

times for all input data, namely T = 15400. The parameters

for the learning are chosen as follows;

(For SOM)
α(0) = 0.3, σ(0) = 5.0,

(For LSOM)

αw = 0.3, αlazy = 0.03, αN = 0.15

σ(0) = 5.0, Dmax = 5.

where we use the same learning rate: α(0) and αw, and σ(0)
for the comparison and the confirmation of the lazy neuron

effect.
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Fig. 5. Learning simulation for Target data. (a) Input data. (b) Learning
result of the conventional SOM.
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Fig. 6. Learning process of proposed LSOM. Red points, blue points and white points denote worker neurons, lazy neurons and indecisive neurons,
respectively. (a) Initial state (t = 0). (b) t = 500. (c) t = 4000. (d) t = 9000. (e) t = 11000. (f) t = 12000. (g) t = 13000. (h) Learning results (t = 15400).

The simulation results of the conventional SOM is shown

in Fig. 5(b). We can see that the conventional SOM does not

self-organize up to all the outliers input data. Figures 6(a)-(h)

show the learning process of LSOM, and the final result is

shown in Fig. 6(h). We can see that LSOM can self-organize

up to all the corner data. This is because LSOM has three

kinds of neurons reflecting the world of worker ants.
1) Behavior of LSOM: Let us consider the learning pro-

cess and behaviors of LSOM in more detail. In the early

stage of learning as in Fig. 6(b), many worker neurons tend

to gather at concentrated input data, namely the cluster area.

Meanwhile, the lazy neurons tend to move to the outside of

cluster because they are not significantly updated. However,

as learning progresses, the lazy neurons self-organize other

cluster as in Fig. 6(c) because they are in different area from

the worker neurons. That is to say the lazy neurons can

discover new input data since they maunder. In the middle

stage of learning as Fig. 6(d), the indecisive neurons, whose

learning rate are larger than the lazy neurons but smaller

than the worker neurons, increase. The lazy neurons and

the indecisive neurons self-organize outside the cluster. As

more learning progresses, the lazy neurons self-organize the

outliers as in Fig. 6(e). In the last stage of learning as in

Figs. 6(f)-(h), the number of indecisive neurons increase

further, and the map converges. From these figures, we can

say that LSOM can self-organize in every corner of input

data than the conventional SOM.
2) Comparison between SOM and LSOM: Furthermore,

in order to compare the learning performance of LSOM with

the conventional SOM numerically, we use the following

well-used two measurements.

Quantization Error Qe [1]: This measures the average

distance between each input vector and its winner;

Qe =
1

N

N∑
j=1

‖xj − w̄j‖, (11)

where w̄j is the weight vector of the corresponding winner

of the input vector xj . Therefore, the small value Qe is more

desirable.

Neuron Utilization U [5]: This measures the percentage of

neurons that are the winner of one or more input vector in

the map;

U =
1

nm

nm∑
i=1

ui, (12)

where ui = 1 if the neuron i is the winner of one or more

input data. Otherwise ui = 0. Thus, U nearer 1.0 is more

desirable.

The calculated two measures are shown in Table I. The

quantization error Qe of LSOM is smaller than the conven-

tional SOM, and by using LSOM, the quantization error Qe

has improved by 45.3545% compared to that of SOM. In

addition, the neuron utilization U of LSOM is larger than

the conventional SOM, and by using LSOM, the neuron

utilization U has improved by 11.6959%. This result means

that the result of LSOM have fewer inactive neurons than the

conventional SOM, and LSOM can obtain more exact map

reflecting the distribution state of input data.
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Fig. 7. Learning simulation for Hepta data. (a) Input Data. (b) Learning result of conventional SOM. (c) Learning result of LSOM.
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Fig. 8. Learning simulation for Atom data. (a) Input Data. (b) Learning simulation of conventional SOM. (c) Learning simulation of LSOM.

TABLE I

QUANTIZATION ERROR Qe AND NEURON UTILIZATION U FOR TARGET

DATA.

Qe U

Conventional SOM 0.0147 0.7600

LSOM 0.0080 0.8489

Improvement rate [%] 45.3545 11.6959

B. For Hepta data

Next, we considered a 3-dimensional input data called

Hepta data set shown in Fig. 7(a), which has a clustering

problem of different densities in clusters. The total number

of the input data N is 212, and the input data has seven

clusters.

We repeated the learning 70 times for all the input data,

namely T = 14840. The learning conditions are the same as

those used in Subsection IV-A.

Figures 7(b) and (c) show the learning results of the

conventional SOM and LSOM, respectively. We can see

that LSOM can self-organize up to edge data than the

conventional SOM.

TABLE II

QUANTIZATION ERROR Qe AND NEURON UTILIZATION U FOR HEPTA

DATA.

Qe U

Conventional SOM 0.0279 0.5333

LSOM 0.0138 0.5600

Improvement rate [%] 50.4575 5.0

The calculated two measures are shown in Table II. The

quantization error Qe of LSOM is smaller and the neuron

utilization U of LSOM is larger than the conventional SOM.

Because the inactive neurons have been reduced by 5.0%,

more neurons are attracted to clusters and the quantization

error Qe has been decreased by 50.4575%. It means that

LSOM can extract the feature of the input data more effec-

tively than the conventional SOM.

C. For Atom data

Furthermore, we considered a 3-dimensional input data

called Atom data set shown in Fig. 8(a). This data set has

clustering problems of linear not separable, different densities
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TABLE III

QUANTIZATION ERROR Qe AND NEURON UTILIZATION U FOR ATOM

DATA.

Qe U

Conventional SOM 0.0493 0.7467

LSOM 0.0314 0.8267

Improvement rate [%] 36.2946 10.7143

and variances. The total number of the input data N is 800,

and the input data has two clusters.

We repeated the learning 20 times for all input data,

namely T = 16000. The learning conditions are the same

as those used in Subsection IV-A.

The learning results of the conventional SOM and LSOM

are shown in Figs. 8(b) and (c). We can see that LSOM can

self-organize edge data more effective than the conventional

SOM.

Table. III shows the calculated two measures. The quan-

tization error Qe of LSOM is smaller than the conventional

SOM, and the quantization error Qe has improved 36.2946%
from using the conventional SOM. In addition, the neuron

utilization U of LSOM is larger than the conventional SOM,

and by using LSOM, the neuron utilization U has improved

by 10.7143%. From these results, we can say that LSOM,

which includes the lazy neurons, can self-organize more

effectively than the conventional SOM which contains only

worker neurons.

V. CONCLUSIONS

In this study, we have proposed the Lazy Self-Organizing

Map (LSOM), which reflects the world of worker ants.

LSOM contains three kinds of neurons: worker neurons, lazy

neurons and indecisive neurons which are neighborhoods

of the lazy neurons. We have investigated the behaviors

of LSOM by applying it to some input data set. We have

confirmed that LSOM can self-organize in every corner of

the input data and can obtain more exact map reflecting the

distribution state of input data than the conventional SOM.

From these results, we can say that LSOM, which includes

the lazy neurons, can self-organize more effectively than the

conventional SOM which contains only worker neurons.

REFERENCES

[1] T. Kohonen, Self-Organizing Maps, Berlin, Springer, vol. 30, 1995.
[2] J. Vesanto and E. Alhoniemi, “Clustering of the Self-Organizing Map,”

IEEE Trans. Neural Networks, vol. 11, no. 3, pp. 586–600, 2002.
[3] H. Hasegawa, “Optimization of GROUP Behavior,” Japan Ethological

Society Newsletter, no. 43, pp. 22–23, 2004.
[4] A. Ultsch, “Clustering with SOM: U*C”, Proc. Workshop on Self-

Organizing Maps, pp.75-82, 2005.
[5] Y. Cheung and L. Law, “Rival-Model Penalized Self-Organizing Map,”

IEEE Trans. Neural Networks, vol. 18, no. 1, pp. 289–295, 2007.

2008 International Joint Conference on Neural Networks (IJCNN 2008) 2281



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


