
Batch-Learning Self-Organizing Map
with False-Neighbor Degree between Neurons

Haruna Matsushita, Student Member, IEEE and Yoshifumi Nishio, Senior Member, IEEE

Abstract— This study proposes a Batch-Learning Self-
Organizing Map with False-Neighbor degree between neurons
(called BL-FNSOM). False-neighbor degrees are allocated be-
tween adjacent rows and adjacent columns of BL-FNSOM. The
initial values of all of the false-neighbor degrees are set to
zero, however, they are increased with learning, and the false-
neighbor degrees act as a burden of the distance between map
nodes when the weight vectors of neurons are updated. BL-
FNSOM changes the neighborhood relationship more flexibly
according to the situation and the shape of data although
using batch learning. We apply BL-FNSOM to some input
data and confirm that FN-SOM can obtain a more effective
map reflecting the distribution state of input data than the
conventional Batch-Learning SOM.

I. INTRODUCTION

S INCE we can accumulate a huge amount of data in recent
years, it is important to investigate various clustering

methods [1]. The Self-Organizing Map (SOM) is an unsu-
pervised neural network [2] and has attracted attention for
its clustering properties. In the learning algorithm of SOM,
a winner, which is a neuron closest to the input data, and its
neighboring neurons are updated, regardless of the distance
between the input data and the neighboring neurons. For this
reason, if we apply SOM to clustering of the input data which
includes some clusters located at distant locations, there are
some inactive neurons between clusters where without the
input data. Because inactive neurons are on a part without
the input data, we are misled into thinking that there are
some input data between clusters.

Then, what are the “neighbors”? In the real world, it
is not always true that neighboring houses are physically
adjacent or close to each other. In other words, “neighbors”
are not always “true neighbors”. In addition, the relationship
between neighborhoods is not fixed, but keeps changing with
time. It is important to change the neighborhood relationship
flexibly according to the situation.

On the other side, the synaptic strength is not constant in
the brain. So far, the Growing Grid network was proposed in
1985 [3]. Growing Grid increases the neighborhood distance
between neurons by increasing the number of neurons.
However, there is not much research changing the synaptic
strength even though there are algorithms which increase the
number of neurons or consider rival neurons [4].

In our past study, we proposed the SOM with False-
Neighbor degree between neurons (called FN-SOM) [5].

Haruna Matsushita and Yoshifumi Nishio are with the Department of
Electrical and Electronic Engineering, Tokushima University, Tokushima,
770–8506, Japan (phone: +81–88–656–7470; fax: +81–88–656–7471; email:
{haruna, nishio}@ee.tokushima-u.ac.jp).

The false-neighbor degrees act as a burden of the distance
between map nodes when the weight vectors of neurons
are updated. We have confirmed that there are few inactive
neurons using FN-SOM, and FN-SOM can obtain the most
effective map reflecting the distribution state of input data.

Meanwhile, there are two well-known learning algorithms
for SOM: sequential learning and batch learning. In the
sequential learning, the winner for an input data is found and
the weight vectors are updated immediately. However, the
sequential learning has some problems as a large calculation
amount and a dependence on order of the input data. In
the batch learning, the updates are deferred to the end of
a leaning, namely the presentation of the whole dataset.
Batch-Learning SOM (BL-SOM) [2] is used to speed up the
calculating time and to remove the dependence on order of
the input data.

In this study, we propose a Batch-Learning Self-
Organizing Map with False-Neighbor degree between neu-
rons (called BL-FNSOM). We improve the previously pro-
posed FN-SOM and apply the batch learning to FN-SOM.
The initial values of all of the false-neighbor degrees are
set to zero, however, they are increased with learning, and
the false-neighbor degrees act as a burden of the distance
between map nodes when the weight vectors of neurons are
updated. BL-FNSOM changes the neighborhood relationship
more flexibly according to the situation and the shape of data
although using batch learning.

We explain the learning algorithm of BL-FNSOM in detail
in Section III. We apply BL-FNSOM to a uniform input data
to investigate an effect of the false-neighbor degree. The
learning behaviors of BL-FNSOM for 2-dimensional input
data and 3-dimensional data, which have some clustering
problem, are investigated in Section IV. In addition, we apply
BL-FNSOM to a real world data set, Iris data. Learning
performance is evaluated both visually and quantitatively
using three measurements and is compared with the con-
ventional BL-SOM. We confirm that FN-SOM can obtain a
more effective map reflecting the distribution state of input
data than BL-SOM.

II. BATCH-LEARNING SELF-ORGANIZING MAP

(BL-SOM)

We explain a batch learning algorithm of SOM in detail.
SOM consists of n × m neurons located at 2-dimensional
rectangular grid. Each neuron i is represented by a d-
dimensional weight vector wi = (wi1, wi2, · · · , wid) (i =
1, 2, · · · , nm), where d is equal to the dimension of the input
vector xj = (xj1, xj2, · · · , xjd) (j = 1, 2, · · · , N). Also

2260

978-1-4244-1821-3/08/$25.00 c©2008 IEEE

batch learning algorithm is iterative, but instead of using a
single data vector at a time, the whole data set is presented to
the map before any adjustments are made. The initial weight
vectors of BL-SOM are given at orderly position based on the
first and second principal components of the d-dimensional
space by the Principal Component Analysis (PCA) [6].

(BLSOM1) An input vector xj is inputted to all the neurons
at the same time in parallel.
(BLSOM2) Distances between xj and all the weight vectors
are calculated. The input vector xj belongs to a winner
neuron which is with the weight vector closest to xj .

cj = arg min
i
{‖wi − xj‖}, (1)

denotes the index of the winner of the input vector xj , where
‖ · ‖ is the distance measure, Euclidean distance.
(BLSOM3) After repeating the steps (BLSOM1) and (BL-
SOM2) for all the input data set, all the weight vectors are
updated as

wnew

i =

∑N

j=1
hcj,ixj∑N

j=1
hcj ,i

, (2)

where t denotes a training step and hcj,i is the neighborhood
function around the winner cj :

hcj ,i = exp

(
−‖ri − rcj

‖2

2σ2(t)

)
, (3)

where ri and rcj
are coordinates of the i-th and the winner c

unit on competitive layer, namely, ‖ri − rcj
‖ is the distance

between map nodes cj and i on the map grid. σ(t) decreases
with time, in this study, we use following equation;

σ(t) = σ0(1 − t/tmax), (4)

where σ0 is the initial value of σ, and tmax is the maximum
number of the learning.
(BLSOM4) The steps from (BLSOM1) to (BLSOM3) suffi-
cient time.

III. BL-SOM WITH FALSE-NEIGHBOR DEGREE

(BL-FNSOM)

We explain a Batch Learning SOM with False-Neighbor
Degree between neurons (BL-FNSOM) in detail. False-
neighbor degrees of rows Rr (1 ≤ r ≤ n − 1) are allocated
between adjacent rows of BL-FNSOM with the size of n×m
grid (as Fig. 1). Likewise, false-neighbor degrees of columns
Ck (1 ≤ k ≤ m − 1) are allocated between adjacent
columns of BL-FNSOM. In other words, R1 means the
false-neighbor degree between neurons of the 1st row and
the 2nd row, and C4 is the false-neighbor degree between
neurons of the 4th column and the 5th column. The initial
values of the false-neighbor degrees are set to zero. and the
initial values of all the weight vectors are given over the
input space at random. Moreover, a winning frequency γi

is associated with each neuron and is set to zero initially.
The initial weight vectors of BL-FNSOM are given as BL-
SOM method. Learning algorithm of BL-FNSOM contains
two steps: Learning steps and Considering False-Neighbors.

C1 C2 Cm-1

R1

R2

Rn-1

m

n

Fig. 1. A false-neighbor degree of row Rr (1 ≤ r ≤ n − 1) and column
Ck (1 ≤ k ≤ m − 1). Neurons of FN-SOM are located at a n × m
rectangular grid.

A flowchart of the learning algorithm is shown in Fig. 2.

Learning Steps

(BL-FNSOM1) An input vector xj is inputted to all the
neurons at the same time in parallel.
(BL-FNSOM2) Distances between xj and all the weight
vectors are calculated, and winner cj is chosen according to
Eq. (1).
(BL-FNSOM3) The winning frequency of winner cj is
increased by

γcj

new = γcj

old + 1. (5)

(BL-FNSOM4) After repeating the steps (BL-FNSOM1) and
(BL-FNSOM3) for all the input data set, all the weight
vectors are updated as

wnew

i =

∑N

j=1
hF cj ,ixj∑N

j=1
hF cj ,i

, (6)

where hF cj ,i is the neighborhood function of FN-SOM:

hF cj ,i = exp

(
−dF (i, cj)

2σ2(t)

)
. (7)

dF (i, cj) is the neighboring distances between the winner cj

and the other neurons calculated with considering the false-
neighbor degrees. For instance, for two neurons s1, which
is located at r1-th row and k1-th column, and s2, which
is located at r2-th row and k2-th column, the neighboring
distance is defined as the following measure;

dF (s1, s2) =

(
|r1 − r2| +

r2−1∑
r=r1

Rr

)2

+

(
|k1 − k2| +

k2−1∑
k=k1

Ck

)2

,

(8)

where r1 < r2, k1 < k2, namely,
∑r2−1

r=r1
Rr means the sum

of the false-neighbor degrees between the rows r1 and r2,
and

∑k2−1

k=k1
Ck means the sum of the false-neighbor degrees

between the column k1 and k2 (as Fig. 3).

2008 International Joint Conference on Neural Networks (IJCNN 2008) 2261

Start

Update weight vectors

Input

Reset

No

No

Yes

No

Find winner

Find false-neighbor

Increase false-neighbor degree
between each and

No

End

Yes

Yes

Find

Considering
False-Neighbors

Yes

Learning step

Fig. 2. Flowchart of BL-FNSOM.

(BL-FNSOM5) If
∑nm

i=1
γi ≥ λ is satisfied, we find the

false-neighbors and increase the false-neighboring degree,
according to steps from (FN-SOM6) to (FN-SOM9). If not,
we perform step (FN-SOM10). In other words, we consider
the false-neighbors every time when the learning steps are
performed for λ input data.

Considering False-Neighbors

(BL-FNSOM6) We find a set of neurons S which have never
become the winner:

S = {i | γi = 0}. (9)

If the neuron, which have never become the winner, does
not exist, namely S = ∅, we return to (FN-SOM1) without

considering the false-neighbors.
(BL-FNSOM7) A false-neighbor fq of each neuron q in S
is chosen from the set of direct topological neighbors of q
denoted as Nq1

. fq is the neuron whose weight vector is
most distant from q;

fq = arg max
i

{‖wi − wq‖}, q ∈ S, i ∈ Nq1
. (10)

(BL-FNSOM8) A false-neighbor degree between each q and
its false-neighbor fq, Rr or Ck , is increased. If q and fq are
in the r-th row and in the k-th and (k + 1)-th column (as
Fig. 4(a)), the false-neighbor degree Ck between columns k

2262 2008 International Joint Conference on Neural Networks (IJCNN 2008)

C1=2 C2=1

R1=1

(1,1)

(2,3)

(a) (b)

Fig. 3. Neighborhood distance between neuron 1 and neuron 7. (a) Conven-
tional SOM method according to Eq. (3). (b) FN-SOM method according
to Eq. (8).

fqq

C2

fq

q

R3

(a) (b)

Fig. 4. Increment of the false-neighbor degree. (a) q and its false-neighbor
fq are in the 3rd row and in the 2nd and 3rd column, respectively. Then, the
false-neighbor degree C2 between columns 2 and 3 is increased by Eq. (11).
(b) q and fq are in the 2nd column and in the 4th and 3rd row, respectively.
The false-neighbor degree R3 between rows 3 and 4 is increased by Eq. (12).

and k + 1 is increased according to

Ck
new = Ck

old +
n + m

2nm
. (11)

In the same way, if q and fq are in the k-th column and in
the (r + 1)-th and r-th row (as Fig. 4(b)), the false-neighbor
degree Rr between rows r and r + 1 is also increased
according to

Rr
new = Rr

old +
n + m

2nm
. (12)

These amounts of increasing the false-neighbor degree are
derived by the number of neurons numerically and are fixed.
(BL-FNSOM9) The winning frequency of all the neurons
are reset to zero: γi = 0.

(BL-FNSOM10) The steps from (FN-SOM1) to (FN-SOM9)
are repeated for all the input data.

IV. EXPERIMENTAL RESULTS

We apply BL-FNSOM to various input data and compare
BL-FNSOM with the conventional BL-SOM.

A. For uniform data

First, in order to confirm that the false-neighbor degree has
a bad effect or not, we consider a 2-dimensional input data,
which is uniformity and has no cluster. The total number of
the input data N is 1000. We repeat the learning 15 times
for all input data. The parameters of the learning are chosen
as follows;
(For SOM)

σ0 = 4.5,

(For FN-SOM)
σ0 = 4.5, λ = 3000,

where we use the same σ0 to BL-SOM and BL-FNSOM for
the comparison and the confirmation of the false-neighbor
degree effect.

Learning results of the two algorithms are shown in Fig. 5.
We can see that the result of BL-FNSOM is completely same
as the conventional BL-SOM.

Furthermore, we use the following three measurements to
evaluate the training performance of the two algorithms.

Quantization Error Qe: This measures the average distance
between each input vector and its winner [2];

Qe =
1

N

N∑
j=1

‖xj − w̄j‖, (13)

where w̄j is the weight vector of the corresponding winner
of the input vector xj . Therefore, the small value Qe is more
desirable.

Topographic Error Te: This describes how well the SOM
preserves the topology of the studied data set [8];

Te =
1

N

N∑
j=1

u(xj), (14)

where N is the total number of input data, u(xj) is 1 if
the winner and 2nd winner of xj are NOT 1-neighbors
each other, otherwise u(xj) is 0. The small value Te is
more desirable. Unlike the quantization error, it considers
the structure of the map. For a strangely twisted map, the
topographic error is big even if the quantization error is
small.

Neuron Utilization U: This measures the percentage of
neurons that are the winner of one or more input vector in
the map [9];

U =
1

nm

nm∑
i=1

ui, (15)

where ui = 1 if the neuron i is the winner of one or more
input data. Otherwise, ui = 0. Thus, U nearer 1.0 is more
desirable.

The calculated three measurements are shown in Table. I.
We can confirm that the all measurements of BL-FNSOM
are same as the conventional BL-SOM. This is because
all neurons become winner, namely false-neighbors are not

2008 International Joint Conference on Neural Networks (IJCNN 2008) 2263

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Fig. 5. Learning results of two algorithms for no cluster data. (a) Input data and initial state. (b) Conventional BL-SOM. (c) BL-FNSOM.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Fig. 6. Learning results for Target data. (a) Input data and initial state. (b) Conventional BL-SOM. (c) BL-FNSOM.

TABLE I

QUANTIZATION ERROR Qe, TOPOGRAPHIC ERROR Te AND NEURON

UTILIZATION U FOR NO CLUSTER DATA.

Qe Te U

BL-SOM 0.0349 0.038 1.0
BL-FNSOM 0.0349 0.038 1.0

chosen, for the uniform input data. We can say that the false-
neighbor degree does not have a bad effect.

B. For 2-dimensional data

Next, we consider 2-dimensional input data as shown in
Fig. 6(a). The input data is Target data set, which has a
clustering problem of outliers [7]. The total number of the
input data N is 770, and the input data has six clusters which
include 4 outliers.

Both BL-SOM and BL-FNSOM have nm = 100 neurons
(10× 10). We repeat the learning 20 times for all input data,
namely tmax = 15400. The learning conditions are the same
used in Fig. 5 except σ0 = 5.

The learning result of the conventional BL-SOM is shown
in Fig. 6(b). We can see that there are some inactive neurons
between clusters. The other side, the result of BL-FNSOM
is shown in Fig. 6(c). We can see from this figure that
there are just a few inactive neurons between clusters, and
BL-FNSOM can obtain more effective map reflecting the

TABLE II

QUANTIZATION ERROR Qe, TOPOGRAPHIC ERROR Te AND NEURON

UTILIZATION U FOR TARGET DATA.

Qe Te U

BL-SOM 0.0144 0.2156 0.82
BL-FNSOM 0.0131 0.1922 0.98
Improvement rate 9.02% 10.85% 19.51%

distribution state of input data than BL-SOM.
The calculated three measurements are shown in Table II.

The quantization error Qe of BL-FNSOM is smaller value
than BL-SOM, and by using BL-FNSOM, the quantization
error Qe has improved 9.02% from using the conventional
BL-SOM. This is because the result of BL-FNSOM has few
inactive neurons, therefore, more neurons can self-organize
the input data. This is confirmed by the neuron utilization U .
The neuron utilization U of BL-FNSOM is larger value than
BL-SOM. It means that 98% neurons of BL-FNSOM are
the winner of one or more input data, namely, there are few
inactive neurons. On the other hand, the topographic error
Te of BL-FNSOM is smaller value although Qe and U are
better values. It means that BL-FNSOM self-organizes most
effectively with maintenance of top quality topology.

C. For 3-dimensional data

Next, we consider 3-dimensional input data.

2264 2008 International Joint Conference on Neural Networks (IJCNN 2008)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

Fig. 7. Learning results for Atom data. (a) Input data and initial state. (b) Conventional BL-SOM. (c) BL-FNSOM.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

Fig. 8. Learning results for Hepta data. (a) Input data and initial state. (b) Conventional BL-SOM. (c) BL-FNSOM.

TABLE III

QUANTIZATION ERROR Qe, TOPOGRAPHIC ERROR Te AND NEURON

UTILIZATION U FOR ATOM DATA.

Qe Te U

BL-SOM 0.0507 0.2975 0.84
BL-FNSOM 0.0461 0.2713 0.93
Improvement rate 9.07% 8.81% 10.71%

1) Atom data: We consider Atom data set shown in
Fig. 7(a), which has clustering problems of linear not sepa-
rable, different densities and variances. The total number of
the input data N is 800, and the input data has two clusters.

We repeat the learning 19 times for all input data, namely
tmax = 15200. The learning conditions are the same used in
Fig. 5 except σ0 = 5.

The learning results of the conventional BL-SOM and BL-
FNSOM are shown in Figs. 7(b) and (c). We can see that
BL-FNSOM can self-organize edge data more effective than
BL-SOM.

The calculated three measurements are shown in Table. III.
In all measurements, FN-BLSOM can obtain better value
than BL-SOM.

2) Hepta data: We consider Hepta data set shown in
Fig. 8(a), which has a clustering problem of different densi-
ties in clusters. The total number of the input data N is 212,
and the input data has seven clusters.

We repeat the learning 70 times for all the input data,
namely tmax = 14840. The learning conditions are the same

TABLE IV

QUANTIZATION ERROR Qe, TOPOGRAPHIC ERROR Te AND NEURON

UTILIZATION U FOR HEPTA DATA.

Qe Te U

BL-SOM 0.0264 0.3208 0.72
BL-FNSOM 0.0211 0.2689 0.97
Improvement rate 20.08% 16.18% 34.72%

used in Fig. 7.

Figures 8(b) and (c) show the learning results of BL-SOM
and BL-FNSOM, respectively. We can see that BL-FNSOM
has fewer inactive neurons than BL-SOM between clusters.

Table IV shows the calculated three measurements. All
measurements are improved significantly from using BL-
SOM. Because the inactive neurons have been reduced by
34.72%, more neurons are attracted to clusters and Qe has
been decreased by about 20%. It means that BL-FNSOM can
extract the feature of the input data more effectively.

In order to investigate extracted cluster structure using
each algorithm, we calculate U-matrix [10] of the learning
results. U-matrix can visualize distance relationships in a
high dimensional data space. Figure 9 shows the U-matrix
from Figs. 8(b) and (c). From these figures, we can see that
cluster boundaries of BL-FNSOM are clearer than BL-SOM.
It means that more neurons of BL-FNSOM self-organize the
input data of cluster part In other words, we can obtain more
detail on the cluster input data in the high dimensional data.

2008 International Joint Conference on Neural Networks (IJCNN 2008) 2265

0.05

0.1

0.15

0.2

0.25

0.3

(a)

0

0.10

0.20

0.30

0.40

0.50

(b)

Fig. 9. U-matrix of learning results for Hepta data. (a) Conventional BL-
SOM. (b) BL-FNSOM.

D. Real world data

Furthermore, we apply BL-FNSOM to the real world
clustering problem. We use the Iris plant data [11] as real
data. This data is one of the best known databased to be found
in the pattern recognition literature [12]. The data set contains
three clusters of 50 instances respectively, where each class
refers to a type of iris plant. The number of attributes is four
as the sepal length, the sepal width, the petal length and
the petal width, namely, the input data are 4-dimension. The
three classes correspond to Iris setosa, Iris versicolor and Iris
virginica, respectively. Iris setosa is linearly separable from
the other two, however Iris versicolor and Iris virginica are
not linearly separable from each other.

We repeat the learning 100 times for all input data, namely
tmax = 15000. The input data are normalized and are sorted
at random. The learning conditions are the same used in
Fig. 7.

Table V shows the calculated three measurements. We
can confirm that all measurement are improved significantly
from using BL-SOM. We can say that BL-FNSOM has fewer
inactive neurons than BL-SOM and can self-organize more
effective with keeping good map topographic.

The U-matrix calculated from each learning result are
shown in Fig. 10. The boundary line of BL-FNSOM between
Iris setosa and the other two is clearer than the conventional
BL-SOM. Meanwhile, it is hard to recognize the boundary
line between Iris versicolor and Iris virginica on both results.

TABLE V

QUANTIZATION ERROR Qe, TOPOGRAPHIC ERROR Te AND NEURON

UTILIZATION U FOR IRIS DATA.

Qe Te U

BL-SOM 0.0150 0.3733 0.82
BL-FNSOM 0.0137 0.2867 0.91
Improvement rate 8.67% 23.20% 10.98%

However, on the BL-FNSOM result, we can faintly observe
the boundary line. Because BL-FNSOM has few inactive
neurons, more neurons can self-organize the cluster input
data, and BL-FNSOM can extract slight different between
Iris versicolor and Iris virginica.

1

1

11

1

1 1

1

11

1

1 1 1

11 1 11

1

1

1

1

1

1

1

1

11

11

1

11

1

1

1

1 1

1

1

1

11

1

1

1

1

1

1

2

2

2 2

2

2

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

222

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

3

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

33 3

3

3

3

3

3

3

3

3

3

333

3

33

3

3

3

3

33 3

3

33 3

3

3

3

3

0.05

0.1

0.15

0.2

0.25

(a)

1

1

1 1

1

1

1

1

1

1

1

1 1

111

1 1

1

1

1

1

1

1 1 11

11 1

1

1

1

1

1

1

1 1

1

1

1 11

11

1

1 1

1

1

2

2

2

2

2

2

2

2

2

2 2

2 22

2

2

2

2

2

2

2

2

2

2

2

2

22

2 2

2

22

2

22

2

2

2

2

2

2

2

2

2

22

2

2

2

3

3

3

33

3 33

3

3

3

3

3

33

3

3

33 3

3

33

3

3

3

3

3

3

3

3

3

3 3

3

3

3 3

33

3

3

3

3

3

3

3

33

3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

Fig. 10. U-matrix of learning results for Iris data. Label 1, 2 and 3
correspond to Iris setosa, Iris versicolor and Iris virginica, respectively.
(a) Conventional BL-SOM. (b) BL-FNSOM.

V. CONCLUSIONS

In this study, we have proposed the Batch-Learning Self-
Organizing Map with False-Neighbor degree between neu-
rons (BL-FNSOM). We have applied BL-FNSOM to 2-
dimensional data, 3-dimensional data and the real world
data. Learning performance has evaluated both visually and
quantitatively and has compared with BL-SOM. We have
confirmed that BL-FNSOM has fewer inactive neurons and
can obtain more effective map reflecting the distribution state
of input data than BL-SOM.

2266 2008 International Joint Conference on Neural Networks (IJCNN 2008)

REFERENCES

[1] J. Vesanto and E. Alhoniemi, “Clustering of the Self-Organizing Map,”
IEEE Trans. Neural Networks, vol. 11, no. 3, pp. 586–600, 2002.

[2] T. Kohonen, Self-organizing Maps, 2nd ed., Berlin, Springer, 1995.
[3] B. Fritzke, “Growing Grid – a self-organizing network with constant

neighborhood range and adaptation strength,” Neural Processing Let-
ters, vol. 2, no. 5, pp. 9–13, 1995.

[4] L. Xu, A. Krzyzak and E. Oja, “Rival penalized competitive learning for
clustering analysis, RBF net, and curve detection,” IEEE Trans. Neural
Networks, vol. 4, no. 4, pp. 636–649, 1993.

[5] H. Matsushita and Y. Nishio, “Self-Organizing Map with False Neigh-
bor Degree between Neurons for Effective Self-Organization,” Proc. of
Workshop on Self-Organizing Maps, pp. WeP-P-13, 2007.

[6] I. T. Jolliffe, Principal Component Analysis, New York, Springer, 1986.
[7] A. Ultsch, “Clustering with SOM: U*C”, Proc. Workshop on Self-

Organizing Maps, pp. 75–82, 2005.
[8] K. Kiviluoto, “Topology Preservation in Self-Organizing Maps”, Proc.

of International Conference on Neural Networks, pp. 294–299, 1996.
[9] Y. Cheung and L. Law, “Rival-Model Penalized Self-Organizing Map,”

IEEE Trans. Neural Networks, vol. 18, no. 1, pp. 289–295, 2007.
[10] A. Ultsch and H.P.Siemon, “Kohonen’s Self Organizing Feature Maps

for Exploratory Data Analysis,” Proc. International Neural Network
Conference, pp. 305–308, 1990.

[11] D. J. Newman, S. Hettich, C. L. Blake and C. J. Merz,
UCI Repository of Machine Learning Database, 1998,
[http://www.ics.uci.edu/ mlearn/MLRepository.html].

[12] R. A. Fisher, “The Use of Multiple Measurements in Taxonomic
Problems,” Annual Eugenics, no.7, part II, pp. 179–188, 1936.

2008 International Joint Conference on Neural Networks (IJCNN 2008) 2267

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

