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Abstract agram and the largest Lyapunov exponent are calculated. We
investigate dierent behaviors between two kinds of the exter-

In our previous research, as the first step to realize a new Sg#ft force. Computer simulated results show that the neurons
Organizing Map model, we have proposed a simple one gkcillate chaotically.

mensional 2-neuron model connected by a nonlinear spring.

This study proposes one dimensional 3-neuron model con-

nected by a nonlinear spring in order to represent a relati@i- 3-Neuron Nonlinear Spring Model of SOM

ship between the winner and its neighboring neurons in SOM

algorithm. Furthermore, we consider two kinds of forces by This study proposes one dimensional 3-neuron SOM
external input vectors and investigate their behaviors. model connected by a nonlinear spring. The model is shown
in Fig. 1. The three neurons are assumed to have the same
massm and to be connected by the nonlinear spring with the
natural lengtH, whose restoring forcé against the variation

o is represented by

1. Introduction

The Self-Organizing Map (SOM) is a subtype of artifici
neural networks. It is trained using unsupervised learning to F=-bx (1)
produce low dimensional representation of the training sam- .
ples while preserving the topological properties of the inpm]ereb denotes the dtiness of each spring.
space. SOM is introduced by Kohonen in 19824dnd is a

. e . . . . Neuron 1 b Neuron 2 b Neuron 3
model simplifying self-organization process of the brain. m v m v, m v,

However, SOM is still far away from the realization of the .iwm—.ifzﬂy\—.é
brain mechanism. In order to realize more powerful and more : :
flexible mechanism, it is important to propose new models of 0 I 2]
the brain mechanism and to investigate their behaviors.

In our previous research, as the first step to realize a newigure 1:Three-neuron nonlinear spring model of SOM.
nonlinear spring model of SOM, we have proposed a simple
one dimensional 2-neuron model connected by a nonlinear
spring [2]. We have investigated its behavior under a simple Without loss of generality, we fix the position of the Neu-
assumption where input vectors are given to the model petin 1 as the origin of the-coordinate. The position of the
odically. Neuron 2 and the Neuron 3, denotedhbyandxz, and the ve-

In this study, we propose one dimensional 3-neuron modtstities of the neuronsv(, v, andvs) are chosen as the state
connected by a nonlinear spring. In the SOM algorithmariables. The motion equation of the model can be described
the neuron nearer to the winner can be updated more siga#-
icantly. By increasing the number of neurons from two to R
three, we represent a relationship between the winner and its d; _

Xy, X3

neighboring neurons. Furthermore, we consider two kinds of dt v
forces by external input vectors; a rectangular wave and a sine % = v
curve. o(ljt
In Section2, we explain the 3-neuron nonlinear spring ml = —avi+b(% - 1)° (2)
model of SOM in detail. The behaviors of the proposed model dd\}z
are investigated by calculating the projection of attractors and | m-—= = —av; - b(%z —1)% + b(Rs — %2 — 1)°
Poincaé map in Sectior8. Furthermore, in order to investi- dvs o .
gate chaotic behavior in detail, one-parameter bifurcation di- | M= = —a%— b(Rs — %2 - 1)%,
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wherea is the friction parameter. By changing the variables/® 7o)

and parameters;

)?2—|=X2, )?3—2|=X3,

_[b _|b _[b
Vi = m Y1, V2= m Y2, V3= m Y3, (3)
a

t_\/ET k
b 9 vb_7

the normalized equations are given as

(=)

m '7! m t 0 m '7r 1;1 t
\gz \E” \/;E D
@) (b)

Figure 3: Force by external input vector. (a) Rectangu-
lar wave described by Eq5). (b) Sine wave described by

% -y Eq. 6).
dx
rr Y3
% - —ky+ xg (4) as Eq. b) or Eg. 6). The Neuron 2 always does not receive
dr the direct €fect from the input vector and is influenced only
% = —ky - xg + (Xa - %o)°3 by the restoripg fprce of't'he nonlinear spring. In this case, the
T motion equation is modified as
ds_ —Kkys — (X3 — X2)°®
dr = 3 3 2) > d_X2 -y
Next, we model the learning process of the SOM by the ex- éj;?’
ternal force by input vectors. When an input vector is given Fr Y3
to the 3-neuron model as Fig, the winner, which is the neu- dy, s
ron nearest to the input vector, is attracted to the input. In this ar —ky1 + 5 - 1(7) (7)
study, we consider two kinds of forces by the external input dy, 3 3
vector; a rectangular wave; pr e A R G )
dys

f(t) = B == k- (- %)+ fr ),
f(t):BSign[sin \/%t), (OStS \/gﬂ)’ (5) dr 3 3 > T—1

wheref(7) is

and a sine curve; B
f(r) = 3 (sign(sint) + 1) (8)

N -~ . [m [m
f(t) = Bsin Bt’ (OStS B”)’ ©) when the external force is Ech)( and is

where sign{) is the signum function and = 0 is the time
when the input vector is given. The shapes of these functions
are shown in Fig3. Note that the other neurons do not recei\when the external force is Ec)( and
a direct éfect from the input vector.

f(r) = g(sinﬁ | sint|), (9)

B
. Neuron 1 Neuron 2 Neuron 3 B=—. 10
o b (10)
? - , 0 0 C 6 0 C The shape of eacf(z) is shown in Fig4.
Input Winner

, . 3. Computer Simulation Results
Figure 2:Input vector and winner

In this section, we show some computer calculation results

. ) ] ) . _obtained by using Runge-Kutta method with time sfep-
In this study, in order to investigate the simplest Iearnlrgr/Soo for EQ. ().

process of 3-neuron model, we concentrate on the case that
the mp_ut vectors are given to the nght-hanq side and Ieg.'l. Attractors and Poincaré maps
hand side of the model alternately with the fixed frequency
vb/m/(2r). Therefore, only the Neuron 1 or the Neuron 3 The projection of attractors onte,—y, and Xs—ysz plane,

becomes the winner and is attracted to the input with the forgben the external force is the rectangular wave as&gate
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Figure 4: Force by periodic external input vector. (a) Force .
described by Eq.g). (b) Force described by EcP) )"~ B

shown in Fig.5(a). We can confirm that the orbits of both
attractors look chaos.
In order to investigate the chaotic behavior of the model @) (b)

in detail, we define the Poinaasection as = 2nr and plot Figure 5: Projection of attractors and their Poineamaps

the dlscrete_ da’Ea on the Pomearect_lon pnto<2—y2 andxs— when force by external input vector is rectangular wee (
ys. The Poincae maps are shown in Figb). We can see gj oy parametek = 0.15 andB = 15. (a) Attractors.

that the Poinca@ maps are folded have the shape like strang:g Poincaé maps. (1x-y» plane. (2)xs-y3 plane.
attractors ]. We can estimate the attractors are chaos from
the shape of Poincamaps.

Similarly, the projection of attractors in case of using the
sine curve as Eq.9] and their Poincd& map are shown in

Fig. 6. The attractors look more complex chaos than &g). . j
The Poincag maps are also folded and have the shape like  ° 2
strange attractors. @~ _° N

3.2. Bifurcation Diagram and Lyapunov Exponent

In order to evaluate the chaotic behavior of the model in ) :
detail, we calculate the largest Lyapunov exponent of the at-
tractors. By using the Jacobian MatiiXI obtained by inte-
grating the variational equations of E@),(we can calculate
the largest Lyapunov exponenif]

N -2
1 : : »
A= fim = ; log DT (j) - €(j)l. (11)
wheree(j) is a normalized basis. S R B . N

Figures7 and 8 show One-parameter bifurcation diagram @) (b)
of x and the largest Lyapunov exponents of the attrac-
tors, which are calculated using Shimada-Nagashima alggyure 6: Projection of attractors and their Poineéamaps
rithm [5]. The control parameter iB and another parametekyhen force by external input vector is sine cur@. (Fixed
kis fixed as 0.15. The Lyapunov exponent takes positive vprametek = 0.15 andB = 15. (a) Attractors. (b) Poincar
ues for a wide range oB in both Fig.7(b) and Fig.8(b). maps. (1)x—V2 plane. (2)xz—ys plane.
Therefore, the nonlinear spring model can be said to generate
chaos. We observe the bifurcation in detail. In case of using
the rectangular wave, complicated bifurcation property can
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be confirmed from Fig7(a). ForB < 11.64, chaotic attrac- 4
tors can be observed for almost parameter values, and we can
confirm the wide chaos region. On the other hand, in case of
using the sine wave, period doubling bifurcation can be con-
firmed from Fig.8(a). We can confirm more and wider chaos
region in smaller value oB than Fig.7(a) ForB < 9.57, 1t
chaotic attractors can be observed for almost parameter val- .~ |
ues. Or?

0.8

0.6

04

0.2r

oo

Figure 8:Bifurcation diagram and largest Lyapunov exponent
changingB for k = 0.15 when external force is sine cun@.(
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