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Abstract

In our previous research, as the first step to realize a new Self-
Organizing Map model, we have proposed a simple one di-
mensional 2-neuron model connected by a nonlinear spring.
This study proposes one dimensional 3-neuron model con-
nected by a nonlinear spring in order to represent a relation-
ship between the winner and its neighboring neurons in SOM
algorithm. Furthermore, we consider two kinds of forces by
external input vectors and investigate their behaviors.

1. Introduction

The Self-Organizing Map (SOM) is a subtype of artificial
neural networks. It is trained using unsupervised learning to
produce low dimensional representation of the training sam-
ples while preserving the topological properties of the input
space. SOM is introduced by Kohonen in 1982 [1] and is a
model simplifying self-organization process of the brain.

However, SOM is still far away from the realization of the
brain mechanism. In order to realize more powerful and more
flexible mechanism, it is important to propose new models of
the brain mechanism and to investigate their behaviors.

In our previous research, as the first step to realize a new
nonlinear spring model of SOM, we have proposed a simple
one dimensional 2-neuron model connected by a nonlinear
spring [2]. We have investigated its behavior under a simple
assumption where input vectors are given to the model peri-
odically.

In this study, we propose one dimensional 3-neuron model
connected by a nonlinear spring. In the SOM algorithm,
the neuron nearer to the winner can be updated more signif-
icantly. By increasing the number of neurons from two to
three, we represent a relationship between the winner and its
neighboring neurons. Furthermore, we consider two kinds of
forces by external input vectors; a rectangular wave and a sine
curve.

In Section2, we explain the 3-neuron nonlinear spring
model of SOM in detail. The behaviors of the proposed model
are investigated by calculating the projection of attractors and
Poincaŕe map in Section3. Furthermore, in order to investi-
gate chaotic behavior in detail, one-parameter bifurcation di-

agram and the largest Lyapunov exponent are calculated. We
investigate different behaviors between two kinds of the exter-
nal force. Computer simulated results show that the neurons
oscillate chaotically.

2. 3-Neuron Nonlinear Spring Model of SOM

This study proposes one dimensional 3-neuron SOM
model connected by a nonlinear spring. The model is shown
in Fig. 1. The three neurons are assumed to have the same
massm and to be connected by the nonlinear spring with the
natural lengthl, whose restoring forceF against the variation
x is represented by

F = −bx3 (1)

whereb denotes the stiffness of each spring.
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Figure 1:Three-neuron nonlinear spring model of SOM.

Without loss of generality, we fix the position of the Neu-
ron 1 as the origin of thex-coordinate. The position of the
Neuron 2 and the Neuron 3, denoted by ˆx2 andx̂3, and the ve-
locities of the neurons (v1, v2 andv3) are chosen as the state
variables. The motion equation of the model can be described
as 

dx̂2

dt
= v2

dx̂3

dt
= v3

m
dv1

dt
= −av1 + b(x̂2 − l)3

m
dv2

dt
= −av2 − b(x̂2 − l)3 + b(x̂3 − x̂2 − l)3

m
dv3

dt
= −av3 − b(x̂3 − x̂2 − l)3,

(2)
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wherea is the friction parameter. By changing the variables
and parameters;

x̂2 − l = x2, x̂3 − 2l = x3,

v1 =

√
b
m

y1, v2 =

√
b
m

y2, v3 =

√
b
m

y3,

t =

√
m
b
τ, k =

a
√

bm
,

(3)

the normalized equations are given as

dx2

dτ
= y2

dx3

dτ
= y3

dy1

dτ
= −ky1 + x3

2

dy2

dτ
= −ky2 − x3

2 + (x3 − x2)3

dy3

dτ
= −ky3 − (x3 − x2)3,

(4)

Next, we model the learning process of the SOM by the ex-
ternal force by input vectors. When an input vector is given
to the 3-neuron model as Fig.2, the winner, which is the neu-
ron nearest to the input vector, is attracted to the input. In this
study, we consider two kinds of forces by the external input
vector; a rectangular wave;

f̂ (t) = B̂sign

sin

√
b
m

t

 , (
0 ≤ t ≤

√
m
b
π

)
, (5)

and a sine curve;

f̂ (t) = B̂sin

√
m
b

t,

(
0 ≤ t ≤

√
m
b
π

)
, (6)

where sign(·) is the signum function andt = 0 is the time
when the input vector is given. The shapes of these functions
are shown in Fig.3. Note that the other neurons do not receive
a direct effect from the input vector.
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Figure 2:Input vector and winner

In this study, in order to investigate the simplest learning
process of 3-neuron model, we concentrate on the case that
the input vectors are given to the right-hand side and left-
hand side of the model alternately with the fixed frequency√

b/m/(2π). Therefore, only the Neuron 1 or the Neuron 3
becomes the winner and is attracted to the input with the force
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Figure 3: Force by external input vector. (a) Rectangu-
lar wave described by Eq. (5). (b) Sine wave described by
Eq. (6).

as Eq. (5) or Eq. (6). The Neuron 2 always does not receive
the direct effect from the input vector and is influenced only
by the restoring force of the nonlinear spring. In this case, the
motion equation is modified as

dx2

dτ
= y2

dx3

dτ
= y3

dy1

dτ
= −ky1 + x3

2 − f (τ)

dy2

dτ
= −ky2 − x3

2 + (x3 − x2)3

dy3

dτ
= −ky3 − (x3 − x2)3 + f (τ − π),

(7)

where f (τ) is

f (τ) =
B
2

(
sign(sinτ) + 1

)
(8)

when the external force is Eq. (5), and is

f (τ) =
B
2

(sinτ+ | sinτ |) , (9)

when the external force is Eq. (6), and

B =
B̂
b
. (10)

The shape of eachf (τ) is shown in Fig.4.

3. Computer Simulation Results

In this section, we show some computer calculation results
obtained by using Runge-Kutta method with time stepδt =
2π/500 for Eq. (7).

3.1. Attractors and Poincaŕe maps

The projection of attractors ontox2–y2 and x3–y3 plane,
when the external force is the rectangular wave as Eq. (8), are
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Figure 4: Force by periodic external input vector. (a) Force
described by Eq. (8). (b) Force described by Eq. (9).

shown in Fig.5(a). We can confirm that the orbits of both
attractors look chaos.

In order to investigate the chaotic behavior of the model
in detail, we define the Poincaré section asτ = 2nπ and plot
the discrete data on the Poincaré section ontox2–y2 andx3–
y3. The Poincaŕe maps are shown in Fig5(b). We can see
that the Poincaŕe maps are folded have the shape like strange
attractors [3]. We can estimate the attractors are chaos from
the shape of Poincaré maps.

Similarly, the projection of attractors in case of using the
sine curve as Eq. (9) and their Poincaré map are shown in
Fig.6. The attractors look more complex chaos than Fig.5(a).
The Poincaŕe maps are also folded and have the shape like
strange attractors.

3.2. Bifurcation Diagram and Lyapunov Exponent

In order to evaluate the chaotic behavior of the model in
detail, we calculate the largest Lyapunov exponent of the at-
tractors. By using the Jacobian MatrixDT obtained by inte-
grating the variational equations of Eq. (7), we can calculate
the largest Lyapunov exponent [4];

λ1 = lim
N→∞

1
N

N∑
j=1

log |DT( j) · e( j)|, (11)

wheree( j) is a normalized basis.
Figures7 and8 show One-parameter bifurcation diagram

of x2 and the largest Lyapunov exponents of the attrac-
tors, which are calculated using Shimada-Nagashima algo-
rithm [5]. The control parameter isB and another parameter
k is fixed as 0.15. The Lyapunov exponent takes positive val-
ues for a wide range ofB in both Fig. 7(b) and Fig.8(b).
Therefore, the nonlinear spring model can be said to generate
chaos. We observe the bifurcation in detail. In case of using
the rectangular wave, complicated bifurcation property can
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Figure 5: Projection of attractors and their Poincaré maps
when force by external input vector is rectangular wave (8).
Fixed parameterk = 0.15 and B = 15. (a) Attractors.
(b) Poincaŕe maps. (1)x2–y2 plane. (2)x3–y3 plane.
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Figure 6: Projection of attractors and their Poincaré maps
when force by external input vector is sine curve (9). Fixed
parameterk = 0.15 andB = 15. (a) Attractors. (b) Poincaré
maps. (1)x2–y2 plane. (2)x3–y3 plane.
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be confirmed from Fig.7(a). ForB < 11.64, chaotic attrac-
tors can be observed for almost parameter values, and we can
confirm the wide chaos region. On the other hand, in case of
using the sine wave, period doubling bifurcation can be con-
firmed from Fig.8(a). We can confirm more and wider chaos
region in smaller value ofB than Fig.7(a) For B < 9.57,
chaotic attractors can be observed for almost parameter val-
ues.
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Figure 7:Bifurcation diagram and largest Lyapunov exponent
changingB for k = 0.15 when external force is rectangular
wave (8).

4. Conclusions

In this study, we have proposed one dimensional 3-neuron
nonlinear spring model of SOM. By increasing the number
of neurons from two to three, we have modeled the relation-
ship between the winner and its neighboring neurons. Fur-
thermore, we have considered two kinds of forces by external
input vectors; a rectangular wave and a sine curve. In order
to investigate chaotic behavior in detail, one-parameter bifur-
cation diagram and the largest Lyapunov exponent have be
calculated. We have investigated different behaviors between
two kinds of the external force and have confirmed that the
neurons oscillate chaotically.
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Figure 8:Bifurcation diagram and largest Lyapunov exponent
changingB for k = 0.15 when external force is sine curve (9).
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