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Abstract—The Self-Organizing Map (SOM) is an un-
supervised neural network introduced by Kohonen and is
a model simplifying self-organization process of the brain.
However, SOM is still far away from the realization of the
brain mechanism. In order to realize more powerful and
more flexible mechanism, it is important to propose new
models of the brain mechanism and to investigate their be-
haviors. In our previous research, as the first step to realize
a new nonlinear spring model of SOM, we have proposed
a simple one dimensional 2-neuron model connected by a
nonlinear spring. In this study, in order to investigate the
behavior of the nonlinear spring model of SOM, we cal-
culate one-parameter bifurcation diagram and the largest
Lyapunov exponent of the proposed model. Computer sim-
ulated results show that the neurons oscillate chaotically.

1. Introduction

The Self-Organizing Map (SOM) is a subtype of artifi-
cial neural networks. It is trained using unsupervised learn-
ing to produce low dimensional representation of the train-
ing samples while preserving the topological properties of
the input space. SOM is introduced by Kohonen in 1982 [1]
and is a model simplifying self-organization process of the
brain.

However, SOM is still far away from the realization of
the brain mechanism. In order to realize more powerful
and more flexible mechanism, it is important to propose
new models of the brain mechanism and to investigate their
behaviors.

In our previous research, as the first step to realize a new
nonlinear spring model of SOM, we have proposed a sim-
ple one dimensional 2-neuron model connected by a non-
linear spring [2]. We have investigated its behavior under
a simple assumption where input vectors are given to the
model periodically.

In this study, in order to investigate the behavior of
the nonlinear spring model of SOM, we calculate one-
parameter bifurcation diagram and the largest Lyapunov
exponent of the proposed model. In Section 2, we explain
the learning algorithm of SOM. In Section 3, we explain
proposed nonlinear spring model of SOM in detail. The
behaviors of the proposed model are investigated by cal-
culating the projection of attractors and Poincaré map in
Section 4. Furthermore, in order to investigate chaotic be-
havior in detail, one-parameter bifurcation diagram and the
largest Lyapunov exponent are calculated. Computer sim-
ulated results show that the neurons oscillate chaotically.

2. Self-Organizing Map (SOM)

We explain the learning algorithm of the Self-Organizing
Map (SOM). SOM consists ofm neurons located at a reg-
ular low-dimensional grid, usually a 2-D grid. The ba-
sic SOM algorithm is iterative. Each neuroni has ad-
dimensional weight vectorwi = (wi1,wi2, · · · ,wid) (i =
1,2, · · · ,m). The initial values of all the weight vectors are
given over the input space at random. The range of the el-
ements ofd-dimensional input datax j = (x j1, x j2, · · · , x jd)
( j = 1,2, · · · ,N) are assumed to be from 0 to 1.

(SOM1) An input vectorx j is inputted to all the neurons at
the same time in parallel.
(SOM2) Distances betweenx j and all the weight vectors
are calculated. The winner, denoted byc, is the neuron
with the weight vector closest to the input vectorx j ;

c = arg min
i
{‖wi − x j‖}, (1)

where‖ · ‖ is the distance measure, Euclidean distance.
(SOM3) The weight vectors of the neurons are updated as;

wi(t + 1) = wi(t) + hc,i(t)(x j − wi(t)), (2)

wheret is the learning step.hc,i(t) is called the neighbor-
hood function and is described as a Gaussian function;

hc,i(t) = α(t) exp

(
−‖r i − rc‖2

2σ2(t)

)
, (3)

where‖r i− rc‖ is the distance between map nodesc andi on
the map grid,α(t) is the learning rate, andσ(t) corresponds
to the width of the neighborhood function. Bothα(t) and
σ(t) decrease with time.
(SOM4) The steps from (SOM1) to (SOM3) are repeated
for all the input data.
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Figure 1: Learning process of Self-Organizing Map.
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3. Nonlinear Spring Model of SOM [2]

In our previous research, as the first step to realize a new
nonlinear spring model of SOM, we have proposed a sim-
ple one dimensional 2-neuron model connected by a non-
linear spring [2]. In this section, we explain the nonlinear
spring model in detail.

The model is shown in Fig. 2. The two neurons are as-
sumed to have the same massm and to be connected by a
nonlinear spring with the natural lengthl whose restoring
forceF against the variation ˆx is represented by

F = −bx̂3 (4)

whereb denotes the stiffness of the spring.

0 l

m m
1v 2v

x̂

Neuron 1 Neuron 2

Figure 2: Two-neuron nonlinear spring model of SOM.

Without loss of generality, we fix the position of the Neu-
ron 1 as the origin of thex-coordinate. The position of the
Neuron 2 ( ˆx) and the velocities of the neurons (v1 andv2)
are chosen as the state variables. The motion equation of
the model can be described as

dx̂
dt

= v2

m
dv1

dt
= −av1 + b(x̂− l)3

m
dv2

dt
= −av2 − b(x̂− l)3

(5)

wherea is the friction parameter. By changing the variables
and parameters;

x̂− l = x, v1 =

√
b
m

y1, v2 =

√
b
m

y2,

t =

√
m
b
τ, k =

a
√

bm
,

(6)

the normalized equations are given as

dx
dτ

= y2

dy1

dτ
= −ky1 + x3

dy2

dτ
= −ky2 − x3.

(7)

Next, we model the learning process of the SOM by the
external force by input vectors. When an input vector is
given to the 2-neuron model as Fig. 3, the winner, which
is the neuron nearer to the input vector, is attracted to the
input with the following force;

f̂ (t) = B̂sin

√
b
m

t

(
0 ≤ t <

√
m
b
π

)
(8)

wheret = 0 is the time when the input vector is given. The
shape of this function is shown in Fig. 4. Note that the
other neuron does not receive a direct effect from the input
vector.
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Figure 3: Input vector and winner.
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Figure 4: Force by external input vector.

In this study, in order to investigate the simplest learn-
ing process of the 2-neuron model, we concentrate on the
case that input vectors are given to the right-hand side and
the left-hand side of the model alternately with the fixed
frequency

√
b/m/(2π). In this case, the motion equation is

modified as

dx
dτ

= y2

dy1

dτ
= −ky1 + x3 − f (τ)

dy2

dτ
= −ky2 − x3 + f (τ − π),

(9)

where

f (τ) =
B
2

(sinτ + | sinτ|), (10)

and

B =
B̂
b
. (11)

The shape off (τ) is shown in Fig. 5.
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Figure 5: Force by periodic external input vector.
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4. Computer Simulation Results

In this section, we show some computer calculation re-
sults obtained by using Runge-Kutta method with time step
δt = 2π/500 for Eq. (9).

4.1. Attractors and Poincaŕe maps

The projections of attractors ontox–y2 plane are shown
in Fig. 6(a). By changing parameterB, we can see that four-
periodic orbit (1), one-periodic orbit (3) and two-periodic
orbit (4). Furthermore, we can confirm that the orbits of the
attractors (2), (5) and (6) look chaos.

In order to investigate the chaotic behavior of the model
in detail, we define the Poincaré section asτ = 2nπ and plot
the discrete data on the Poincaré section ontox–y2 plane.
The Poincaŕe maps are shown in Fig. 6(b). Four-periodic
orbit (1) bifurcates to chaos which is estimated from the
shape of the Poincaré map. Periodic window (3) and (4)
can be observed in the chaos region. AsB increases, the
chaos (5) grows to more complex chaos (6). We can see
that the Poincaŕe map (5) and (6) are folded and have the
shape like strange attractors [3].

4.2. Bifurcation Diagram and Lyapunov Exponent

In order to calculate the largest Lyapunov exponents of
the attractors, we derive the variational equations of Eq. (9)
as follows;

d
dτ
∂x
∂x0

=
∂y2

∂x0

d
dτ
∂y1

∂x0
= −k

∂y1

∂x0
+ 3x2 ∂x

∂x0

d
dτ
∂y2

∂x0
= −k

∂y2

∂x0
− 3x2 ∂x

∂x0

d
dτ
∂x
∂y10

=
∂y2

∂y10
d
dτ
∂y1

∂y10
= −k

∂y1

∂y10
+ 3x2 ∂x

∂y10
d
dτ
∂y2

∂y10
= −k

∂y2

∂y10
− 3x2 ∂x

∂y10
d
dτ
∂x
∂y20

=
∂y2

∂y20
d
dτ
∂y1

∂y20
= −k

∂y1

∂y20
+ 3x2 ∂x

∂y20
d
dτ
∂y2

∂y20
= −k

∂y2

∂y20
− 3x2 ∂x

∂y20
.

(12)

The Jacobian MatrixDT are obtained by integrating
Eq. (12) numerically [4];

DT =



∂x
∂x0

∂x
∂y10

∂x
∂y20

∂y1

∂x0

∂y1

∂y10

∂y1

∂y20
∂y2

∂x0

∂y2

∂y10

∂y2

∂y20


. (13)

By using the Jacobian MatrixDT, we can calculate the
largest Lyapunov exponent;

λ1 = lim
N→∞

1
N

N∑
j=1

log |DT( j) · e( j)|, (14)

wheree( j) is a normalized basis.
One-parameter bifurcation diagram ofx and the largest

Lyapunov exponents of the attractors, which are calculated
using the algorithm of Shimada-Nagashima [5], are shown
in Figs. 7(a) and (b), respectively. The control parameter
is B and another parameterk is fixed as 0.15. As shown in
Fig. 7(b), the Lyapunov exponent takes positive values for
a wide range ofB. Therefore, the nonlinear spring model
can be said to generate chaos, namely, the neurons oscil-
late chaotically. We observe the bifurcation in detail. For
6.3 < B < 6.92, a window corresponding to the periodic or-
bit in Fig. 6(1) is observed. For 6.92< B < 7.4 , the largest
Lyapunov exponent takes positive values, namely, the at-
tractor in Fig. 6(2) is chaos. For 8.9 < B < 10.5, the large
window corresponding to the period-doubling bifurcation
in Figs. 6(3) and (4) is observed. ForB < 10.5, chaotic
attractors can be observed for almost parameter values. We
have also confirmed that a lot of small periodic windows
are embedded in the chaotic region.

5. Conclusions

In this study, we have investigated the behavior of the
nonlinear spring model of SOM by calculating the projec-
tion of attractor and Poincaré map. Furthermore, in order
to investigate chaotic behavior in detail, one-parameter bi-
furcation diagram and the largest Lyapunov exponent were
calculated. We have investigated the related bifurcation
phenomena and have confirmed that the neurons oscillate
chaotically.

Our current works are changing the input method and
increasing the number of neurons. We investigate that how
the model behaves when the input vectors are given in a cir-
cular pattern. It is also our plan in future work to realize the
mechanism nearer to SOM, for example, like the nonlinear
spring model with a feature extraction capability.
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Figure 6: Projection of attractors ontox–y2 plane and their
Poincaŕe maps. Fixed parameterk = 0.15. (a) Attractors.
(b) Poincaŕe maps. (1)B = 6.75. (2)B = 8. (3) B = 9.5.
(4) B = 10. (5)B = 10.4. (6) B = 12.
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Figure 7: Bifurcation diagram and Lyapunov exponent of
the nonlinear spring model. (a) One-parameter bifurcation
diagram. (b) Largest Lyapunov exponent.k = 0.15.
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