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Abstract—The Self-Organizing Map (SOM) is an un- 2. Self-Organizing Map (SOM)
supervised neural network introduced by Kohonen and is
a model simplifying self-organization process of the brain. We explain the learning algorithm of the Self-Organizing
However, SOM is still far away from the realization of theMap (SOM). SOM consists ah neurons located at a reg-
brain mechanism. In order to realize more powerful andlar low-dimensional grid, usually a 2-D grid. The ba-
more flexible mechanism, it is important to propose neic SOM algorithm is iterative. Each neuraorhas ad-
models of the brain mechanism and to investigate their béimensional weight vectow; = (W1, Wiz, -+, Wig) (i =
haviors. In our previous research, as the first step to realide2. - - -,m). The initial values of all the weight vectors are
a new nonlinear Spring model of SOM, we have propos&iven over the input space at random. The range of the el-
a simple one dimensional 2-neuron model connected by&inents ofd-dimensional input data; = (X;1, Xj2, - * -, Xja)
nonlinear spring. In this study, in order to investigate théj = 1,2,---,N) are assumed to be from 0 to 1.

behavior of the nonlinear spring model of SOM, we calrsom1) An input vectory; is inputted to all the neurons at
culate one-parameter bifurcation diagram and the largege same time in parallel.

Lyapunov exponent of the proposed model. Computer Sifisom2) Distances betweer; and all the weight vectors
ulated results show that the neurons oscillate chaotically.5re calculated. The winner. denoted tyis the neuron
with the weight vector closest to the input vectgr
1. Introduction )
c=arg rTi“rUlWi - Xjll}, 1)
The Self-Organizing Map (SOM) is a subtype of artifi-
cial neural networks. It is trained using unsupervised learnwhere|| - || is the distance measure, Euclidean distance.

ing to produce low dimensional representation of the trainlSOM3) The weight vectors of the neurons are updated as;
ing samples while preserving the topological properties of

the input space. SOM s introduced by Kohonen in 1982 [1] Wi (t + 1) = wi(t) + hei (D)(x; — wi(t)), 2
and is a model simplifying self-organization process of the
brain. wheret is the learning steph;(t) is called the neighbor-

However, SOM is still far away from the realization of hood function and is described as a Gaussian function;
the brain mechanism. In order to realize more powerful

and more flexible mechanism, it is important to propose hei(t) = a(t) exp(_”ri - rcllz) @)
new models of the brain mechanism and to investigate their ’ 202(t) )’
behaviors.

In our previous research, as the first step to realize a nél{pereliri—rellis the distance between map nodesdi on
nonlinear spring model of SOM, we have proposed a sinf® map gride(t) is the learning rate, and|(t) corresponds
ple one dimensional 2-neuron model connected by a noff the width of the neighborhood function. Bait) and
linear spring [2]. We have investigated its behavior undef () decrease with time.

a simple assumption where input vectors are given to t{€OM4) The steps from (SOM1) to (SOM3) are repeated
model periodically. for all the input data.

In this study, in order to investigate the behavior of
the nonlinear spring model of SOM, we calculate one-
parameter bifurcation diagram and the largest Lyapunov NP
exponent of the proposed model. In Section 2, we explain Lo L PSS
the learning algorithm of SOM. In Section 3, we explain PP ’ P
proposed nonlinear spring model of SOM in detail. The L & & P
behaviors of the proposed model are investigated by cal
culating the projection of attractors and Poiricanap in Winner ¢
Section 4. Furthermore, in order to investigate chaotic be- ~ nput vector Input vector
havior in detail, one-parameter bifurcation diagram and the
largest Lyapunov exponent are calculated. Computer sim- Figure 1: Learning process of Self-Organizing Map.
ulated results show that the neurons oscillate chaotically.

[ ] Winner ¢ [ ]
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3. Nonlinear Spring Model of SOM [2] wheret = 0 is the time when the input vector is given. The
) i . shape of this function is shown in Fig. 4. Note that the
In our previous research, as the first step to realize a neyther neuron does not receive a direteet from the input
nonlinear spring model of SOM, we have proposed a Sinyector.
ple one dimensional 2-neuron model connected by a non-
linear spring [2]. In this section, we explain the nonlinear f(t)

spring model in detail. . -
The model is shown in Fig. 2. The two neurons are as- A

sumed to have the same massnd to be connected by a Inout Winner
nonlinear spring with the natural lengtiwhose restoring pu ¢
force F against the variatiow i5 represented by

F=-b% 4

whereb denotes the dfiness of the spring.

Figure 3: Input vector and winner.
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Figure 2: Two-neuron nonlinear spring model of SOM. 5 ! - >
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Without loss of generality, we fix the position of the Neu-
ron 1 as the origin of th&-coordinate. The position of the
Neuron 2 §) and the velocities of the neurong @ndvs)

are chosen as the state variables. The motion equation of ) _ ) _
the model can be described as In this study, in order to investigate the simplest learn-

ing process of the 2-neuron model, we concentrate on the

Figure 4: Force by external input vector.

3—)( = Vv case that input vectors are given to the right-hand side and
dvt the left-hand side of the model alternately with the fixed
— = —av +b(R-1)? (5) frequencyvb/m/(2x). In this case, the motion equation is
dt o
modified as
m2 _ v b(g—I)?
a O dx
whereais the friction parameter. By changing the variables ddT = ¥
and parameters; d_)j = —ky+ - () 9)
N b b
R=l=% iz |2y Vo= y 2y, B -y Hr-n),
m m dr
= a (6)
t=1/—r, k= ——, where
b vbm B . .
. . . f(r) = =(sint +|sinT]), (10)
the normalized equations are given as 2
dx and A
d@ BRG B= E. (11)
Y1
== = —kyp+x° 7
37 Wt % The shape of (1) is shown in Fig. 5.
ﬁ = —ky2 — X3
dr .
Next, we model the learning process of the SOM by the f(g
external force by input vectors. When an input vector is
given to the 2-neuron model as Fig. 3, the winner, which
is the neuron nearer to the input vector, is attracted to the f ps : Y >
input with the following force; 0 ad 7
N . Figure 5: Force by periodic external input vector.
f(t):Bsin,/%t (03t< ,/%‘n) (8) J yP P
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4. Computer Simulation Results By using the Jacobian Matri®T, we can calculate the

) ) ) largest Lyapunov exponent;
In this section, we show some computer calculation re-

sults obtained by using Runge-Kutta method with time step 1 A . .

5t = 21/500 for Eq. (9). L= Jim Z; logIDT(j) - (j) (14)
]:

4.1. Attractors and Poincare maps wheree(j) is a normalized basis.

L One-parameter bifurcation diagramofind the largest

_ The projections of attractors ontey, plane are shown )y 55,nqy exponents of the attractors, which are calculated
in Fig. 6(a). By changing parametBywe can see that four- | ing the algorithm of Shimada-Nagashima [5], are shown
periodic orbit (1), one-periodic orbit (3) and two-periodici rigs 7(a) and (b), respectively. The control parameter
orbit (4). Furthermore, we can confirm that the orbits of the; g and another parametkiis fixed as 0L5. As shown in
attractors (2), (5) and (6) look chaos. , Fig. 7(b), the Lyapunov exponent takes positive values for

In order to investigate the chaotic behavior of the model \;iqe range oB. Therefore, the nonlinear spring model
in detail, we define the Poindasection as = 2nrand plot - ;5 pe said to generate chaos, namely, the neurons oscil-
the discrete data on the Poineasection ontoc-y, plane. |4t chatically. We observe the bifurcation in detail. For
The Poincae maps are shown in Fig. 6(b). Four-periodics 3 _ B < 692, a window corresponding to the periodic or-
orbit (1) bifurcates to chaos which is estimated from thgy; i, Fig. 6(1) is observed. For® < B < 7.4 , the largest
shape of the Poincarmap. Periodic window (3) and (4) | yapunov exponent takes positive values, namely, the at-
can be observed in the chaos region. B\écreases, the otorin Fig. 6(2) is chaos. For®< B < 105, the large
chaos (5) grows to more complex chaos (6). We can Sggnqow corresponding to the period-doubling bifurcation
that the Poinc@ map (5) and (6) are folded and have thgy, Figs. 6(3) and (4) is observed. FBr< 105, chaotic
shape like strange attractors [3]. attractors can be observed for almost parameter values. We

) ) ) have also confirmed that a lot of small periodic windows
4.2. Bifurcation Diagram and Lyapunov Exponent are embedded in the chaotic region.

In order to calculate the largest Lyapunov exponents of
the attractors, we derive the variational equations of Eq. (3. Conclusions

as follows;

In this study, we have investigated the behavior of the
dox  dy nonlinear spring model of SOM by calculating the projec-
droxe 0% tion of attractor and Poincarmap. Furthermore, in order
d oy Ay , OX to investigate chaotic behavior in detail, one-parameter bi-
a7 9% = - % +3x % furcation diagram and t_he Iar_gest Lyapunov exponent were
d ay, oy, , OX calculated. We have mves_tlgated the related b|furcafuon
— 2% = k== -3x*— phenomena and have confirmed that the neurons oscillate
dr %o 2 9% chaotically.

Eﬂ _ % Our current works are changing the input method and
dr dyag Y1 increasing the number of neurons. We investigate that how
doaoy —k% N 3X2£ the model behaves when the input vectors are given in a cir-
drdy,, dy1o Y10 (12)  cular pattern. Itis also our plan in future work to realize the
d ay, Ay> 22 X mechanism nearer to SOM, for example, like the nonlinear
dr dy1 1o X 1o spring model with a feature extraction capability.
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. ) Figure 7: Bifurcation diagram and Lyapunov exponent of
; ; e the nonlinear spring model. (a) One-parameter bifurcation
6) 9 Tk diagram. (b) Largest Lyapunov exponekt 0.15.

(a) (b)
Figure 6: Projection of attractors ontey, plane and their
Poincaé maps. Fixed parametkr= 0.15. (a) Attractors.
(b) Poincaé maps. (1B = 6.75. (2)B = 8. (3)B = 9.5.
(4)B=10. (5)B=104. (6)B=12.
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