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Abstract—Studies on chaos synchronization in
coupled chaotic circuits are extensively carried out in
various fields. In this study, two simple chaotic cir-
cuits cross-coupled by inductors are investigated. In-
teresting state transition phenomenon around chaos
synchronization is observed by computer simulations
and circuit experiments.

1. Introduction

Synchronization phenomena in complex systems
are very good models to describe various higher-
dimensional nonlinear phenomena in the field of nat-
ural science. Studies on synchronization phenomena
of coupled chaotic circuits are extensively carried out
in various fields [1]-[10]. We consider that it is very
important to investigate the phenomena related with
chaos synchronization to realize future engineering ap-
plication utilizing chaos.

In this study, two Shinriki-Mori chaotic cir-
cuits [11][12] cross-coupled by inductors are investi-
gated. We observe the generation of interesting state
transition phenomenon around chaos synchronization.
Computer simulations and circuit experiments are car-
ried out to investigate the phenomenon in detail.

2. Circuit Model

Figure 1 shows the circuit model. In the circuit,
two Shinriki-Mori chaotic circuits are cross-coupled via
inductors L2.

First, we approximate the v − i characteristics of
the nonlinear resistors consisting of the diodes by the
following 3-segment piecewise-linear functions.

id1 =





G(v11 − v12 − V ) (v11 − v12 > V )

0 (|v11 − v12| ≤ V )

G(v11 − v12 + V ) (v11 − v12 < −V )

(1)

id2 =





G(v21 − v22 − V ) (v21 − v22 > V )

0 (|v21 − v22| ≤ V )

G(v21 − v22 + V ) (v21 − v22 < −V )

(2)

Figure 1: Circuit model.

The circuit equations are described as follows.





L1
di11
dt

= v12

L1
di12
dt

= v22

C1
dv11

dt
= −id1 − i21 + gv11

C1
dv21

dt
= −id2 − i22 + gv21

C2
dv12

dt
= id1 + i22 − i11

C2
dv22

dt
= id2 + i12 − i21

L2
di21
dt

= v11 − v22

L2
di22
dt

= v12 − v21

(3)

By using the following variables and the parameters,
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



i11 =
√

C2

L1
V x1, v11 = V y1, v12 = V z1,

i21 =
√

C2

L1
V x2, v21 = V y2, v22 = V z2,

i12 =
√

C2

L1
V w1, i22 =

√
C2

L1
V w2,

α =
C2

C1
, β =

√
L1

C2
G, γ =

√
L1

C2
g,

δ =
L1

L2
, t =

√
L1C2 τ,

(4)

the normalized circuit equations are given as follows.




ẋ1 = z1

ẋ2 = z2

ẏ1 = α{γy1 − w1 − βf (y1 − z1)}

ẏ2 = α{γy2 − w2 − βf (y2 − z2)}

ż1 = β f(y1 − z1) + w2 − x1

ż2 = β f(y2 − z2) + w1 − x2

ẇ1 = δ(y1 − z2)

ẇ2 = δ(y2 − z1)

(5)

where f are the nonlinear functions corresponding to

the v − i characteristics of the nonlinear resistors and
are described as follows.

f(y1 − z1) =





y1 − z1 − 1 (y1 − z1 > 1)
0 (|y1 − z1| ≤ 1)
y1 − z1 + 1 (y1 − z1 < −1)

(6)

f(y2 − z2) =





y2 − z2 − 1 (y2 − z2 > 1)
0 (|y2 − z2| ≤ 1)
y2 − z2 + 1 (y2 − z2 < −1).

(7)

3. State Transition Phenomenon

From the circuit in Fig. 1, we can observe inter-
esting state transition phenomenon around chaos syn-
chronization.

Some examples of the phenomenon are shown in
Figs. 2 and 3. These results are obtained by calcu-
lating Eq. (5) with the Runge-Kutta method. The
two circuits exhibit chaos but almost synchronized in
in-phase in the sense that the attractor is almost in the
quadrant I or III on the y1 − y2 plane. When one cir-
cuit switches to/from the positive region from/to the
negative region, the other follows the transition after
a few instants. The sojourn time between the state
transitions becomes longer as the coupling parameter
δ decreases.
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Figure 2: State transition phenomenon around in-
phase synchronization (computer calculated result).
α = 1.5, β = 5.0, γ = 0.2, and δ = 0.005. (a) At-
tractor on y1 − z1 plane. (b) Attractor on y1 − y2

plane. (c) Time waveform.
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Figure 3: State transition phenomenon around in-
phase synchronization (computer calculated result).
α = 1.5, β = 5.0, γ = 0.2, and δ = 0.008. (a) At-
tractor on y1 − z1 plane. (b) Attractor on y1 − y2

plane. (c) Time waveform.

Figure 4 shows how the sojourn times change as
the coupling parameter changes. The curve of circles
shows the average period of the state transitions of y1.
The curve of crosses shows the average time delay of
the state transitions of y2 when the state transitions
of y1 are considered to be the reference.
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Figure 4: Sojourn time between state transitions versus coupling parameter (computer calculated result). α =
2.605, β = 4.0, and γ = 0.1.

From this figure, we can confirm how the sojourn
time between the state transitions changes according
to the change of the coupling parameter.

It is very interesting that we can also confirm the
generation of the state transition around the anti-
phase synchronization for different set of parameter
values. An example of such modes are shown in Fig. 5.
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Figure 5: State transition phenomenon around anti-
phase synchronization (computer calculated result).
α = 2.0, β = 4.0, γ = 0.1, and δ = 0.0014. (a)
Attractor on y1 − z1 plane. (b) Attractor on y1 − y2

plane. (c) Time waveform.

4. Circuit Experimental Results

Because it is difficult to realize the very small cou-
pling parameter like δ = 0.001, the circuit experiments
are carried out with relatively large δ.

The circuit experimental results are shown in Fig. 6.
The corresponding computer calculated results are
shown in Fig. 7.

We can say that the both results agree well.

5. Conclusions

In this study, we have investigated interesting state
transition phenomenon observed from two Shinriki-
Mori chaotic circuits cross-coupled by inductors.

Investigating the coexistence of the states and sta-
tistical analysis of the observed phenomena are our
important future work.
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Figure 6: Circuit experimental result. L1 = 9.93mH,
L2 = 648mH, C1=32.8nF, C2=49.5nF, and g=1.89mS.
(a) Attractor on v11 − v12 plane. Horizontal and ver-
tical: 1 V/div. (b) Attractor on v11 − v21 plane. Hor-
izontal and vertical: 1 V/div. (c) Time waveform v11

and v21. Horizontal 0.5 ms/div and vertical: 2 V/div.
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Figure 7: Computer calculated result corresponding to
Fig. 6. α = 1.5, β = 5.0, γ = 0.2, and δ = 0.015. (a)
Attractor on y1 − z1 plane. (b) Attractor on y1 − y2

plane. (c) Time waveform.
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