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Abstract— In therealworld, it is notalwaystruethat
the nextdoor houseis closeto my house,in otherwords,
“neighbors”arenot always“true neighbors”.In this study,
we proposea new Self-OrganizingMap (SOM) algorithm,
SOM with FalseNeighbordegreebetweenneurons(called
FN-SOM).The behavior of FN-SOM is investigatedwith
learningfor variousinput data.We confirmthatFN-SOM
canobtainthemoreeffectivemapreflectingthedistribution
stateof inputdatathantheconventionalSOMandGrowing
Grid.

1 Intr oduction

Since we can accumulatea huge amountof data in re-
cent years, it is important to investigate variouscluster-
ing methods[1]. Then, the Self-OrganizingMap (SOM)
hasattractedattentionfor its clusteringproperties.SOM is
anunsupervisedneuralnetwork introducedby Kohonenin
1982[2] andis a modelsimplifying self-organizationpro-
cessof the brain. SOM obtainsstatisticalfeatureof input
dataand is appliedto a wide field of dataclassifications.
We canobtain the mapreflectingthe distribution stateof
input datausingSOM. In the learningalgorithmof SOM,
a winner, which is a neuronwith the weight vectorclos-
estto the input vector, andits neighboringneuronareup-
dated,regardlessof the distancebetweenthe input vector
andthe neighboringneuron. For this reason,if we apply
SOM to clusteringof the input datawhich includessome

�

�

� � ��

(a) (b)
Figure 1: What are the “neighbors”? The housesB and
C is A’s next-door neighborson the left andon the right,
respectively. (a) The houseB is at the top of a mountain.
(b) TheriverbetweenA andB doesnothave abridge.

clusterslocatedat distantlocation,therearesomeinactive
neuronsbetweenclusters.Becauseinactiveneuronsareon
a part without the input data,we aremisledinto thinking
thattherearesomeinputdatabetweenclusters.

Meanwhile,in therealworld, it isnotalwaystruethatthe
next-doorhouseis closeto my house.For example,a case
thatthenext-doorhouseis atthetopof amountainwhereas
my houseis at thefoot (asFig. 1(a)),andanothercasethat
thereis a river, which doesnot have abridge,betweenmy
houseandmy next-doorhouse(asFig. 1(b)). This means
that“neighbors”arenotalways“true neighbors”.

On the otherside, the synapticstrengthis not constant
in the brain. So far, the Growing Grid network waspro-
posedin 1985[3]. Growing Grid increasesthe neighbor-
hooddistancebetweenneuronsby increasingthe number
of neurons. However, thereare few researcheschanging
thesynapticstrengthasfar aswe know eventhoughthere
are algorithmswhich increasethe numberof neuronsor
considerrival neurons[4], [5].

In our past study, we proposedthe algorithm which
changesthe neighborhooddistancebetweenneurons[6].
However, thealgorithmusedtherankorderof the distances
betweentheinputdataandweightvectorsof neuronsin ad-
dition to changingtheneighborhooddistance.Thustheal-
gorithmdid notwork well if thepositionsof all theweight
vectorsof the neuronswerenot taken into consideration.
Moreover, thealgorithmneedsa lot of calculationamount
becausewehave to calculatetherankorderateveryupdat-
ing of theweightvector.

In this study, we proposea new SOM algorithm,SOM
with FalseNeighbordegreebetweenneurons(calledFN-
SOM) without the rank order. False-neighbordegreesare
allocatedbetweenadjacentrows andadjacentcolumnsof
FN-SOM.Wefind theneuronq whichhasbecomethewin-
nerleastfrequently, andtheneurons,whichis themostdis-
tantfrom q in asetof directtopologicalneighborsof q, are
saidto be “f alseneighbors”of q. The initial valuesof all
of thefalse-neighbordegreesaresetto zero,however, they
areincreasedwith learning,andthefalse-neighbordegrees
act asa burdenof the distancebetweenmapnodeswhen
theweightvectorsof neuronsareupdated.

We explain the learningalgorithmof FN-SOMin detail
in Section4. The learningbehaviors of FN-SOM for 2-



dimensionalinput data,SwissRoll dataand Iris dataare
investigated. Learningperformanceis evaluatedboth vi-
sually and quantitatively using two measurements.Fur-
thermore,theresultsarecomparedwith thoseobtainedby
the conventionalSOM and Growing Grid. We can con-
firm that thereare few inactive neuronsusing FN-SOM,
andFN-SOMcanobtainthemosteffective mapreflecting
thedistributionstateof inputdatain thethreealgorithms.

2 Self-OrganizingMap

We explainthelearningalgorithmof theconventionalSelf-
OrganizingMap (SOM). SOM consistsof n × m neurons
locatedat a regular low-dimensionalgrid, usually a 2-D
n × m rectangulargrid. The basicSOM algorithmis it-
erative. Eachneuroni hasa d-dimensionalweight vec-
tor wi = (wi1, wi2, · · · , wid) (i = 1, 2, · · · , nm). The
initial valuesof all the weight vectorsaregiven over the
input spaceat random. The rangeof the elementsof d-
dimensionalinput data xj = (xj1, xj2, · · · , xjd) (j =
1, 2, · · · , N) areassumedto befrom 0 to 1.

(SOM1) An input vectorxj is inputtedto all the neurons
at thesametime in parallel.
(SOM2) Distancesbetweenxj andall the weight vectors
arecalculated.Thewinner, denotedby c, is theneuronwith
theweightvectorclosestto theinput vectorxj ;

c = arg min
i
{‖wi − xj‖}, (1)

where‖ · ‖ is thedistancemeasure,Euclideandistance.
(SOM3) Theweightvectorsof theneuronsareupdatedas

wi(t + 1) = wi(t) + hc,i(t)(xj − wi(t)), (2)

wheret is thelearningstep.hc,i(t) is calledtheneighbor-
hoodfunctionandis describedasaGaussianfunction;

hc,i(t) = α(t) exp

(

−
‖ri − rc‖

2

2σ2(t)

)

, (3)

where‖ri − rc‖ is thedistancebetweenmapnodesc and
i on the mapgrid, α(t) is the learningrate,andσ(t) cor-
respondsto thewidth of theneighborhoodfunction. Both
α(t) andσ(t) decreasewith time, in thisstudy, weusefol-
lowing equations;

α(t) = α0(1 − t/tmax), σ(t) = σ0(1 − t/tmax), (4)

whereα0 andσ0 arethe initial valueof α andσ, respec-
tively, andtmax is themaximumnumberof thelearning.
(SOM4) The stepsfrom (SOM1) to (SOM3) arerepeated
for all theinputdata.

3 Growing Grid

We explainanoverview of theGrowing Grid. Thenetwork
of Growing Grid consistsof nm neuronslocatedat a rect-
angularn × m grid. Eachneuronhasan d-dimensional

weightvectorwi astheconventionalSOM.A winningfre-
quency γi is associatedwith eachneuronandis setto zero
initially.

An input vectorxj is inputtedto all theneurons,anda
winnerc is foundaccordingto Eq. (1). Theweightvectors
of theneuronsareupdatedaccordingto

wi(t + 1) = wi(t) + hGc,i(t)(xj − wi(t)), (5)

wherehGc,i(t) is the neighborhoodfunction of Growing
Grid;

hGc,i(t) = α0 exp

(

−
dg

2(c, i)

2σ0
2

)

, (6)

whereα0 is a constantlearningrate,andσ0 is a constant
width parameter. dg(c, i) is the distanceon the grid be-
tweena winner c andeachneuroni and is calculatedby
city-block distance(which is alsoknown asL1-norm). At
eachlearningstep, the winning frequency of c is incre-
mentedby γc

new = γc
old + 1.

After n × m × λg numberof learningstepshave been
performed,we determinethe neuronq which hasbecome
thewinnermostfrequently;

q = arg max
i

{γi}. (7)

We find the neuronf which is with the most different
weightvectorin 1-neighborof q. We inserta new row (or
column)betweenq andf . Theweightvectorsof thenew
neuronsareinterpolatedfrom their neighborswhich does
increasethedensityof weightvectorsin thevicinity of wq.
The numbern of rows (or m of columns)are increased,
thenall thewinning frequency is reset.We continuewith
thenext roundof learningunlessnm ≥ nmmax is fulfilled.

Thegrowth processis finished,weperformthefine-tune
the weight vectorsusing a decreasinglearningrate. We
perform t′max = n × m × λf stepsaccordingto Eq. (5)
usingα(t′) = α0(α1/α0)

t′/t′
max . t′ denotesthe learning

stepin the fine-tuningphasewhich startsafter the growth
stepis finished.

4 SOM with False Neighbor Degree
(FN-SOM)

We explainanew SOMalgorithm,SOMwith FalseNeigh-
bor Degreebetweenneurons(FN-SOM). False-neighbor
degreesof rowsRr (1 ≤ r ≤ n− 1) areallocatedbetween
adjacentrows of FN-SOMwith thesizeof n × m grid (as
Fig. 2). Likewise, false-neighbordegreesof columnsCk

(1 ≤ k ≤ m − 1) areallocatedbetweenadjacentcolumns
of FN-SOM.In otherwords,R1 meansthefalse-neighbor
degreebetweenneuronsof the1strow andthe2ndrow, and
C4 is thefalse-neighbordegreebetweenneuronsof the4th
columnandthe5th column.Theinitial valuesof all of the
false-neighbordegreesaresetto zero,andtheinitial values
of all the weight vectorsaregiven over the input spaceat
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Figure2: A false-neighbordegreeof row Rr (1 ≤ r ≤
n − 1) andcolumnCk (1 ≤ k ≤ m − 1). Neuronsof
FN-SOMarelocatedatan × m rectangulargrid.

random. Moreover, a winning frequency γi is associated
with eachneuronandis setto zeroinitially.

Learning Steps

(FN-SOM1) An input vectorxj is inputtedto all theneu-
ronsat thesametime in parallel.
(FN-SOM2) Distancesbetweenxj andall theweightvec-
tors arecalculated,anda winner c is found accordingto
Eq.(1).
(FN-SOM3) Incrementthewinning frequency of winnerc
by γc

new = γc
old + 1.

(FN-SOM4) The neighboringdistancesbetweenthe win-
ner c and the otherneuronsarecalculated. For instance,
for two neuronss1, which is locatedatr1-th row andk1-th
column,ands2, whichis locatedatr2-th row andk2-th col-
umn, the neighboringdistanceis definedasthe following
measure;

df (s1, s2) = (|r1−r2|+

r2−1
∑

r=r1

Rr)
2+(|k1−k2|+

k2−1
∑

k=k1

Ck)2,

(8)
wherer1 < r2, k1 < k2, namely,

∑r2−1

r=r1
Rr meansthe

sumof thefalse-neighbordegreesbetweentherowsr1 and
r2, and

∑k2−1

k=k1
meansthe sum of the false-neighborde-

greesbetweenthecolumnk1 andk2.
(FN-SOM5) Theweightvectorsof theneuronsareupdated
as

wi(t + 1) = wi(t) + hF c,i(t)(xj − wi(t)), (9)

wherehF c,i(t) is theneighborhoodfunctionof FN-SOM:

hF c,i(t) = α(t) exp

(

−
df (c, i)

2σ2(t)

)

. (10)

(FN-SOM6) If
∑nm

i=1
γi ≥ λ is satisfied,wefind thefalse-

neighborsand increasethe false-neighboringdegree,ac-
cordingto stepsfrom (FN-SOM7)to (FN-SOM10).If not,
weperformstep(FN-SOM11).In otherwords,weconsider

thefalse-neighborsevery time whenthe learningstepsare
performedfor λ inputdata.

Considering False-Neighbors

(FN-SOM7) We find the neuronq which hasbecomethe
winnerleastfrequently:

q = arg min
i
{γi}, (11)

where,if morethanoneγi is minimum,theneuroni with
thesmallestindex is chosen.
(FN-SOM8) A false-neighborf of q is chosenfrom theset
of directtopologicalneighborsof q denotedasNq1

.f is the
neuronwhoseweightvectoris mostdistantfrom q:

f = arg max
i

{‖wi − wq‖}, i ∈ Nq1
(12)

(FN-SOM9) A false-neighbordegree betweenq and its
falseneighborf , Rr or Ck, is increased.If q andf are
in the r-th row andin thek-th and(k + 1)-th column(as
Fig. 3(a)), the false-neighbordegreeCk betweencolumns
k andk + 1 is increasedaccordingto

Ck
new = Ck

old +

{

1 − exp

(

−
‖wf − wq‖

4

2σF
2

)}

, (13)

whereσF is theconstantwidth parameterof theGaussian
function.

In thesameway, if q andf arein thek-th columnandin
the(r+1)-th andr-th row (asFig.3(b)),thefalse-neighbor
degreeRr betweenrows r andr + 1 is alsoincreasedac-
cordingto

Rr
new = Rr

old +

{

1 − exp

(

−
‖wf − wq‖

4

2σF
2

)}

. (14)

(FN-SOM10)Thewinningfrequency of all theneuronsare
resetto zero:

γi = 0. (15)

(FN-SOM11)Thestepsfrom (FN-SOM1)to (FN-SOM10)
arerepeatedfor all theinputdata.

5 Experimental Results

WeapplyFN-SOMto variousinputdataandcompareFN-
SOM with theconventionalSOM andGrowing Grid.

5.1 For 2-dimensionaldata

First, we consider2-dimensionalinput dataas shown in
Fig. 4(a). The input data is generatedartificially as fol-
lows. Total numberof the input dataN is 1200,andthe
input dataincludethreeclusters.400 dataaredistributed
within a rangefrom 0.1 to 0.9 horizontallyandfrom 0.05
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Figure4: Learningresultsof threealgorithmsfor 2-D data. (a) Input data. (b) ConventionalSOM. (c) Growing Grid.
(d) FN-SOM.
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Figure3: Incrementthefalse-neighbordegree.(a)q andits
false-neighborf arein the3rd row andin the2ndand3rd
column,respectively. Then,the false-neighbordegreeC2

betweencolumns2 and3 is increasedby Eq. (13). (b) q
andf are in the 2nd columnand in the 4th and3rd row,
respectively. Then,the false-neighbordegreeR3 between
rows3 and4 is increasedby Eq.(14).

to 0.15vertically. Theother400dataaredistributedwithin
a rangefrom 0.1 to 0.9 horizontallyandfrom 0.45to 0.55
vertically. The remaining400 dataaredistributedwithin
a rangefrom 0.1 to 0.9 horizontallyandfrom 0.85to 0.95
vertically. All theinputdataaresortedat random.

Both the conventionalSOM and FN-SOM hasnm =
100 neurons(10 × 10). Growing Grid startslearningwith
a2× 2 neurons,andnew rowsandcolumnsareinsertedas
long asthenumberof neuronsis lessthannmmax = 100.
We repeatthe learning15 timesfor all input data,namely
tmax = 18000. Theparametersof the learningarechosen
asfollows;
(For SOM)

α0 = 0.3, σ0 = 4,

(For Growing Grid)

α0 = 0.1, σ0 = 0.9, λg = 20, α1 = 0.005, λf = 100,

(For FN-SOM)

α0 = 0.3, σ0 = 4, σF = 0.05, λ = 500,

whereweusethesameα0 andσ0 to SOMandFN-SOMfor
thecomparisonandtheconfirmationof thefalse-neighbor
degreeeffect.

Thelearningresultsof theconventionalSOMandGrow-
ing Grid areshown in Figs.4(b) and(c), respectively. We
canseethattherearesomeinactive neuronsbetweenthree
clusters.Theotherside,theresultof FN-SOMis shown in
Fig.4(d). Wecanseefrom thisfigurethattherearenoinac-
tive neuronsbetweenthreeclusters,andFN-SOMcanob-
tain themoreeffective mapreflectingthedistribution state
of inputdatathanSOM andGrowing Grid.

Furthermore,in orderto thelearningperformanceof FN-
SOMin comparisonwith theconventionalSOMandGrow-
ing Grid, we usethefollowing two measurementsto eval-
uatethetrainingperformanceof thethreealgorithms.

Quantization Err or Q: This measuresthe averagedis-
tancebetweeneachinput vectorandits winner;

Q =
1

N

N
∑

j=1

‖xj − w̄j‖
2, (16)

wherew̄j is the weight vectorof the correspondingwin-
nerof theinput vectorxj . Therefore,thesmallvalueQ is
moredesirable.

Neuron Utilization U: This measuresthe percentageof
neuronsthat are the winner of one or more input vector
in themap[5];

U =
1

nm

nm
∑

i=1

ui, (17)

whereui = 1 if theneuroni is thewinnerof oneor more
input data.Otherwise,ui = 0. Thus,U nearer1.0 is more
desirable.

Thecalculatedtwo measurementsareshown in Table.1.
ThequantizationerrorQ of FN-SOMis thesmallestvalue
in the threealgorithms,andby usingFN-SOM,the quan-
tization errorQ hasimproved 18.9% from usingthe con-
ventionalSOM.This is becausetheresultof FN-SOMhas
no inactive neurons,therefore,themoreneuronscanself-
organizethe input data. This is confirmedby the neuron
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utilization U . Theneuronutilization U of FN-SOMis the
largestvaluein thethreealgorithmsandis 1.0which is the
maximumvalue.It meansthatall theneuronsof FN-SOM
arethewinnerof oneor moreinput data,namely, no neu-
ronsareinactiveneurons.

Table1: QuantizationerrorQ andNeuronutilizationU for
2-dimensionalinputdata.

SOM Growing Grid FN-SOM

Q 6.2756 × 10−4 7.1131 × 10−4 5.0902 × 10−4

U 0.8200 0.8056 1.0

5.2 For SwissRoll data

Next, weconsider“SwissRoll” datausedby Tenenbaumet
al. [7], asshown in Fig. 5. Total numberof the input data
N is 1000,andtheinputdataarenormalizedandaresorted
at random.
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Figure5: SwissRoll datafor 3-dimensionalinputdata.

Werepeatthelearning15timesfor all inputdata,namely
tmax = 15000. Thelearningconditionsarethesameused
in Fig. 4 exceptσF = 0.03 andλg = 300 for FN-SOM.

The learningresultsof the threealgorithmsareshown
in Figs.6(a)-(c),respectively. Furthermore,Figs.6(d)-(f)
show theresultsof Figs.6(a)-(c)in 2-D (namely, X-Y co-
ordinate),respectively. We canseefrom thesefiguresthat
FN-SOM canobtainthe mosteffective mapreflectingthe
distributionstateof inputdata.

The calculatedthe quantizationerror Q and the neu-
ron utilization U areshown in Table.2. We confirm that
thequantizationerrorQ of FN-SOMis thesmallestvalue
in the threealgorithms,andQ of FN-SOM hasimproved
14.6% from using the conventionalSOM. Moreover, the
neuronutilizationU of FN-SOMis thelargestvaluein the
threealgorithmsandis 1.0, which is the maximumvalue,
as in the caseof the 2-dimensionalinput data. From this
tableandFig. 6, wecansaythattheresultof FN-SOMhas
thefewestinactiveneurons.

Table2: QuantizationerrorQ andNeuronutilizationU for
SwissRoll data.

SOM Growing Grid FN-SOM

Q 0.0121 0.0123 0.0104
U 0.9400 0.9821 1.0

5.3 For Iris data

Furthermore,we apply FNN-SOM to the real world clus-
teringproblem.We usetheIris plantdata[8] asrealdata.
This datais oneof the bestknown databasedto be found
in patternrecognitionliteratures[9]. Thedatasetcontains
threeclustersof 50instancesrespectively, whereeachclass
referstoatypeof iris plant.Thenumberof attributesis four
asthesepallength,thesepalwidth, thepetallengthandthe
petalwidth, namely, the input dataare4-dimension.The
threeclassescorrespondto Iris setosa, Iris versicolor and
Iris virginica, respectively. Iris setosa is linearly separable
from the other two, however Iris versicolor and Iris vir-
ginica arenot linearly separablefrom eachother.

We repeatthe learning 100 times for all input data,
namelytmax = 15000. Theinput dataarenormalizedand
aresortedat random.Thelearningconditionsarethesame
usedin Fig. 4 exceptσF = 0.02 for FN-SOM.

ThecalculatedquantizationerrorQ andtheneuronuti-
lizationU areshown in Table.3. Weconfirmthatthequan-
tization error Q of FN-SOM is the smallestvalue in the
threealgorithms,andQ of FN-SOMhasimproved16.7%
from usingtheconventionalSOM. This is becausethe re-
sult of FN-SOM hardly hasinactive neuronsbetweenIris
setosa andthe othertwo, therefore,the moreneuronscan
self-organizethe dataof Iris versicolor andIris virginica.
The neuronutilization U of FN-SOM is the largestvalue
in thethreealgorithms.Fromtheseresults,wecanconfirm
theefficiency of FN-SOM.

Table3: QuantizationerrorQ andNeuronutilizationU for
Iris data.

SOM Growing Grid FN-SOM

Q 0.0018 0.0027 0.0015
U 0.7300 0.7315 0.7800

6 Conclusions

In this study, we have proposeda new SOM algorithm,
SOM with FalseNeighbordegreebetweenneurons(called
FN-SOM). False-neighbordegreesare allocatedbetween
adjacentrows andadjacentcolumnsof FN-SOM.Theini-
tial valuesof all of the false-neighbordegreesare set to
zero, however, they are increasedwith learning,and the
false-neighbordegreesact asa burdenof the distancebe-
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Figure6: Learningresultsof threealgorithmsfor SwissRoll data. (a) ConventionalSOM. (b) Growing Grid. (c) FN-
SOM. (d) Resultof SOM shown in 2-D (X-Y coordinate). (e) Resultof Growing Grid shown in 2-D. (f) Resultof
FN-SOMshown in 2-D.

tweenmapnodeswhenthe weight vectorsof neuronsare
updated.WehaveappliedFN-SOMto 2-dimensionaldata,
Swiss Roll data and Iris data, and we have investigated
the learningbehaviors of FN-SOM. Furthermore,the re-
sults were comparedwith thoseobtainedby the conven-
tional SOM and Growing Grid. We have confirmedthat
the quantizationerror of FN-SOM wasthe smallestvalue
in the threealgorithms. Moreover, the neuronutilization
of FN-SOM wasthe largestvaluein the threealgorithms.
Fromtheseresults,wehaveconfirmedtheefficiency of FN-
SOM.

In the futurewe intendto investigateFN-SOMin more
detail in particularits usefor high-dimensionaldata.
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