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Abstract— Intherealworld, it is notalwaystruethat
the nextdoor houseis closeto my house,in otherwords,
“neighbors”arenot always“true neighbors”.In this study
we proposea new Self-OiganizingMap (SOM) algorithm,
SOM with FalseNeighbordegreebetweemeurongcalled
FN-SOM). The behaiior of FN-SOM s investigatedwith
learningfor variousinput data. We confirmthat FN-SOM
canobtainthemoreeffective mapreflectingthedistribution
stateof inputdatathanthecornventionalSOM andGrowing
Grid.

1 Intr oduction

Since we can accumulatea huge amountof datain re-
centyears,it is importantto investigate various cluster
ing methods[1]. Then,the Self-Olganizing Map (SOM)
hasattractedattentionfor its clusteringpropertiesSOMis
anunsuperviseaieuralnetwork introducedoy Kohonenin
1982[2] andis a modelsimplifying self-oganizationpro-
cessof the brain. SOM obtainsstatisticalfeatureof input

dataandis appliedto a wide field of dataclassifications.

We can obtainthe mapreflectingthe distribution stateof
input datausing SOM. In the learningalgorithmof SOM,
a winner, which is a neuronwith the weight vector clos-
estto the input vector andits neighboringneuronareup-
dated,regardlessof the distancebetweenthe input vector
andthe neighboringneuron. For this reason,if we apply
SOM to clusteringof the input datawhich includessome

(@) (b)
Figure 1: What are the “neighbors”? The housesB and
C is A's next-door neighborson the left and on the right,
respectiely. (a) The houseB is at the top of a mountain.
(b) Theriver betweenA andB doesnothave abridge.

clusterdocatedat distantlocation,therearesomeinactive
neuronetweerclusters.Becausénactive neuronsareon
a partwithout the input data,we are misledinto thinking
thattherearesomeinput databetweerclusters.

Meanwhile,in therealworld, it is notalwaystruethatthe
next-door houseis closeto my house.For example,a case
thatthenext-doorhouseds atthetop of amountainwhereas
my houseis atthefoot (asFig. 1(a)),andanothercasethat
thereis ariver, which doesnot have abridge,betweermy
houseandmy next-door house(asFig. 1(b)). This means
that“neighbors”arenot always“true neighbors”.

On the otherside, the synapticstrengthis not constant
in the brain. So far, the Growing Grid network was pro-
posedin 1985[3]. Growing Grid increaseghe neighbor
hooddistancebetweenneuronsby increasingthe number
of neurons. However, thereare few researcheshanging
the synapticstrengthasfar aswe know eventhoughthere
are algorithmswhich increasethe numberof neuronsor
considerival neurond4], [5].

In our paststudy we proposedthe algorithm which
changeghe neighborhoodlistancebetweenneurons[6].
However, thealgorithmusedtherankorderof the distances
betweertheinputdataandweightvectorsof neuronsn ad-
dition to changingthe neighborhoodlistance Thustheal-
gorithmdid notwork well if the positionsof all theweight
vectorsof the neuronswere not taken into consideration.
Moreover, thealgorithmneedsa lot of calculationamount
becauseve haveto calculateherankorderat every updat-
ing of theweightvector

In this study we proposea nev SOM algorithm, SOM
with FalseNeighbordegreebetweenneurons(called FN-
SOM) without the rank order False-neighbodegreesare
allocatedbetweenadjacentrows and adjacentcolumnsof
FN-SOM.Wefind theneurong which hasbecomehewin-
nerleastfrequently andtheneuronswhichis the mostdis-
tantfrom ¢ in asetof directtopologicalneighborf ¢, are
saidto be “falseneighbors”of ¢q. Theinitial valuesof all
of thefalse-neighbodegreesaresetto zero,however, they
areincreasedvith learning,andthefalse-neighbodegrees
actasa burdenof the distancebetweenmap nodeswhen
theweightvectorsof neuronsareupdated.

We explain thelearningalgorithmof FN-SOMin detail
in Section4. The learningbehaiors of FN-SOM for 2-
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dimensionalinput data, SwissRoll dataand Iris dataare
investigated. Learningperformances evaluatedboth vi-
sually and quantitatvely using two measurements.Fur-
thermore the resultsare comparedwvith thoseobtainedby
the corventional SOM and Growing Grid. We can con-
firm that there are few inactive neuronsusing FN-SOM,
andFN-SOM canobtainthe mosteffective mapreflecting
thedistribution stateof input datain thethreealgorithms.

2 Self-Organizing Map

We explainthelearningalgorithmof the corventionalSelf-

OrganizingMap (SOM). SOM consistsof n x m neurons
locatedat a regular low-dimensionalgrid, usually a 2-D

n x m rectangulamgrid. The basicSOM algorithmis it-

eratve. Eachneuroni hasa d-dimensionalweight vec-
tor w; = (wil,wiz, BN wtd) (L =1,2,--- ;er). The
initial valuesof all the weight vectorsare given over the
input spaceat random. The rangeof the elementsof d-

dimensionalinput dataxz; = (zj1,2 2, --,2jq) (J =

1,2,---,N) areassumedo befrom0to 1.

(SOM1) An input vectorz; is inputtedto all the neurons
atthesametimein parallel.

(SOM2) Distancedetweenc; andall the weightvectors
arecalculated Thewinner, denotedy c, is theneuronwith
theweightvectorclosesto theinputvectora;;

1)

where|| - || is thedistancemeasureEuclideandistance.
(SOM3) Theweightvectorsof the neuronsareupdatedas

wi(t+1) = w;(t) + hei(t) (@ —wi(t), (2)

wheret is thelearningstep. . ;(t) is calledthe neighbor
hoodfunctionandis describedasa Gaussiarunction;

i — el
heqi(t) = a(t) exp ( 202(0) > ,
where||r; — r.| is thedistancebetweermapnodesc and
i onthe mapgrid, «(t) is thelearningrate,and o (t) cor
respondgo the width of the neighborhoodunction. Both
a(t) ando(t) decreasevith time, in this study we usefol-
lowing equations;

a(t) = ap(l — t/tmax), o) =00(1 —t/tmax), (4)

whereay andoy aretheinitial valueof o ando, respec-
tively, andt, ... is the maximumnumberof thelearning.
(SOM4) The stepsfrom (SOM1)to (SOM3) arerepeated
for all theinputdata.

¢ = argmin{[w; —z;|},

®3)

3 Growing Grid

We explainanoverview of the Growing Grid. Thenetwork
of Growing Grid consistf nm neurondocatedat a rect-
angularn x m grid. Eachneuronhasan d-dimensional

weightvectorw; asthe corventionalSOM. A winning fre-
gueng +; is associatedvith eachneuronandis setto zero
initially.

An input vectorz; is inputtedto all the neuronsanda
winnerc is foundaccordingto Eq. (1). Theweightvectors
of theneuronsareupdatedaccordingto

wherehg. ;(t) is the neighborhoodunction of Growing
Grid;
dy*(c,i)
th,i(t) = Qg €xp <—9207) , (6)

whereqy is a constantearningrate,and o is a constant
width parameter d,(c, ¢) is the distanceon the grid be-
tweena winner ¢ andeachneuron: andis calculatedby

city-block distance(whichis alsoknown as L;-norm). At

eachlearning step, the winning frequeng of c is incre-
mentedoy v,"" = v,°d + 1.

After n x m x A, numberof learningstepshave been
performed,we determinethe neurong which hasbecome
thewinnermostfrequently;

¢ = arg max{y,}. ©
We find the neuron f which is with the most different
weightvectorin 1-neighborof q. We inserta new row (or
column)betweeng and f. The weightvectorsof the new
neuronsareinterpolatedirom their neighborswhich does
increasehedensityof weightvectorsin thevicinity of w,.
The numbern of rows (or m of columns)are increased,
thenall the winning frequeng is reset. We continuewith
thenext roundof learningunlessnm > nmuyay is fulfilled.

Thegrowth processs finished ,we performthefine-tune
the weight vectorsusing a decreasindearningrate. We
performt, .. = n x m x Ay stepsaccordingto Eq. (5)
usinga(t’) = ag(ay/ag)t/tmax. t' denotesthe learning
stepin thefine-tuningphasewhich startsafter the growth
stepis finished.

4 SOM with False Neighbor Degree
(FN-SOM)

We explainanev SOM algorithm,SOMwith FalseNeigh-
bor Degree betweenneurons(FN-SOM). False-neighbor
degreesof rows R, (1 < r < n — 1) areallocatedbetween
adjacentrows of FN-SOMwith the sizeof n x m grid (as
Fig. 2). Likewise, false-neighbodegreesof columnsCy,
(1 <k <m —1) areallocatedbetweeradjacentolumns
of FN-SOM.In otherwords, R; meanghe false-neighbor
degreebetweemeuronf the 1strow andthe2ndrow, and
Cy isthefalse-neighbodegreebetweemeuronof the 4th
columnandthe 5th column. Theinitial valuesof all of the
false-neighbodegreesaresetto zero,andtheinitial values
of all the weightvectorsare given over the input spaceat
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Figure2: A false-neighbodegreeof row R, (1 < r <
n — 1) andcolumnCy, (1 < k < m — 1). Neuronsof
FN-SOMarelocatedatan x m rectangulagrid.

random. Moreover, a winning frequeng ~; is associated
with eachneuronandis setto zeroinitially.

Learning Steps

(FN-SOM1) An input vectorz; is inputtedto all the neu-
ronsatthesametime in parallel.

(FN-SOM2) Distancesetweent; andall theweightvec-
tors are calculated,and a winner ¢ is found accordingto

Eq. ().

(FN-SOMB3) Incrementhewinning frequeng of winnerc

by ,chew — ,Ycold +1.

(FN-SOM4) The neighboringdistancesetweenthe win-

ner ¢ andthe other neuronsare calculated. For instance,
for two neuronssy, whichis locatedat r; -th row andk; -th

column,ands,, whichis locatedatr,-th row andks-th col-

umn, the neighboringdistanceis definedasthe following

measure;

ro—1 ko—1
(81782 |7’1—T2|+Z R |l€1—k2‘+z Ck y
rT=ri k= kl

C)
wherer; < ra, ki < ko, namely > % " R, meansthe
sumof thefalse- ne|ghbodegreesbetweertherowsr1 and
ry, and 52 kl meansthe sum of the false-neighbode-
greesbetweerthe columnk; andks.

(FN-SOMB5) Theweightvectorsof theneuronsareupdated
as

7’21

wi(t+1) = wi(t) + hpei(t)(z; —wi(t)), (9)

whereh . ;(t) is theneighborhoodunctionof FN-SOM:
_ dy(c, 1)

hFc,i (t) - Oé(t) exXp ( 202 (t) ) . (10)

(FN-SOMS6) If 37" ~; > X is satisfiedwe find thefalse-
neighborsand increasethe false-neighboringlegree, ac-
cordingto stepsfrom (FN-SOM7)to (FN-SOM10).If not,
we performstep(FN-SOM11).In otherwords,we consider

thefalse-neighborsvery time whenthelearningstepsare
performedfor X inputdata.

Considering False-Neighbors
(FN-SOM7) We find the neurong which hasbecomethe
winnerleastfrequently:

g = arg min{~; }, (11)

K3

where,if morethanone~; is minimum, the neuron: with
thesmallestindex is chosen.
(FN-SOMB8) A false-neighboyf of ¢ is choserfrom theset
of directtopologicalneighborsof ¢ denotedasN,, . f isthe
neuronwhoseweightvectoris mostdistantfrom ¢:
i € Ngg

(12)

f= argmlax{Hwi —wyll},

(FN-SOM9) A false-neighbordegree betweeng and its
falseneighbor f, R, or Cy, is increased.If ¢ and f are
in the r-th row andin the k-th and (k + 1)-th column(as
Fig. 3(a)), thefalse-neighbodegreeC), betweencolumns
k andk + 1 is increasedccordingto

_ 4
C new __ O old {1 —exp <7 wa wq“ >}7 (13)

20F2
whereo - is the constantwidth parameteof the Gaussian
function.
In thesameway, if ¢ and f arein the k-th columnandin
the (r+1)-th andr-th row (asFig. 3(b)), thefalse-neighbor
degree R, betweerrows r andr + 1 is alsoincreasedc-

cordingto
o 4
RT'new _ R’rold + {1 — exp <_ wa2UF,l;7qH >} . (14)

(FN-SOM10) Thewinningfrequeng of all theneuronsare
resetto zero:

v = 0. (15)

(FN-SOM11) Thestepsrom (FN-SOM1)to (FN-SOM10)
arerepeatedor all theinputdata.

5 Experimental Results

We apply FN-SOMto variousinput dataandcompare-N-
SOMwith thecorventionalSOM andGrowing Grid.

5.1 For 2-dimensionaldata

First, we consider2-dimensionalinput dataas shovn in
Fig. 4(a). The input datais generatedartificially as fol-
lows. Total numberof the input data N is 1200, andthe
input dataincludethreeclusters. 400 dataare distributed
within a rangefrom 0.1 to 0.9 horizontallyandfrom 0.05

m,
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Figure4: Learningresultsof threealgorithmsfor 2-D data.

(d) FN-SOM.

@) (b)

Figure3: Incrementhefalse-neighbodegree.(a) ¢ andits

false-neighboy arein the 3rd row andin the 2ndand3rd

column,respectiely. Then,the false-neighbodegreeC,

betweencolumns2 and 3 is increasedvy Eq. (13). (b) ¢

and f arein the 2nd columnandin the 4th and 3rd row,

respectiely. Then,the false-neighbodegree R3; between
rows 3 and4 is increasedy Eq. (14).

to 0.15vertically. Theother400dataaredistributedwithin
arangefrom 0.1to 0.9 horizontallyandfrom 0.45to 0.55
vertically. The remaining400 dataare distributed within
arangefrom 0.1to 0.9 horizontallyandfrom 0.85to 0.95
vertically. All theinputdataaresortedatrandom.

Both the corventional SOM and FN-SOM hasnm =
100 neurong10 x 10). Growing Grid startslearningwith
a2 x 2 neuronsandnew rows andcolumnsareinsertedas
long asthe numberof neuronss lessthannm ., = 100.
We repeatthelearning15 timesfor all input data,namely
tmax = 18000. The parametersf thelearningarechosen
asfollows;

(For SOM) ag = 0.3, o = 4,
(For Growing Grid)

ag =0.1, 09 = 0.9, Ay = 20, a; = 0.005, Ay = 100,

(For FN-SOM)
ag =0.3, 09 =4, op =0.05, X\ =500,

0.2 0.4

(d)
(a) Input data. (b) Corventional SOM. (c) Growing Grid.

0.6 0.8 1

wherewe usethesamen andog to SOMandFN-SOMfor
the comparisorandthe confirmationof the false-neighbor
degreeeffect.

Thelearningresultsof thecorventionalSOM andGrow-
ing Grid areshowvn in Figs.4(b) and(c), respectiely. We
canseethattherearesomeinactive neuronsbetweerthree
clusters.Theotherside,theresultof FN-SOMis shavn in
Fig.4(d). We canseefrom thisfigurethattherearenoinac-
tive neuronsbetweerthreeclustersand FN-SOM canob-
tain the moreeffective mapreflectingthe distribution state
of input datathanSOM andGrowing Grid.

Furthermorein orderto thelearningperformancef FN-
SOMin comparisomwith thecornventionalSOMandGrow-
ing Grid, we usethe following two measurement® eval-
uatethetraining performancef thethreealgorithms.

Quantization Error Q: This measureghe averagedis-
tancebetweereachinputvectorandits winner;

1 N
Q=5 llz; — @,
j=1

wherew; is the weight vector of the correspondingvin-
nerof theinputvectorx;. Thereforethesmallvalue@ is
moredesirable.

(16)

Neuron Utilization U: This measuregshe percentageof
neuronsthat are the winner of one or more input vector
in themap[5];

1 nm
U= nm ; i
whereu; = 1 if theneuroni is thewinnerof oneor more
inputdata.Otherwiseu; = 0. Thus,U nearerl.0is more
desirable.

Thecalculatedwo measuremen@reshovn in Table.1.
Thequantizatiorerror@ of FN-SOMis the smallestvalue
in the threealgorithms,and by using FN-SOM, the quan-
tization error Q hasimproved 18.9% from usingthe con-
ventionalSOM. This is becauséheresultof FN-SOMhas
no inactive neuronstherefore the moreneuronscanself-
organizethe input data. This is confirmedby the neuron

a7
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utilization U. The neuronutilization U of FN-SOM:is the
largestvaluein thethreealgorithmsandis 1.0whichis the
maximumvalue. It meanghatall theneuronsof FN-SOM
arethewinner of oneor moreinput data,namely no neu-
ronsareinactive neurons.

Tablel: Quantizatiorerror@ andNeuronutilization U for
2-dimensionalnput data.

] SOM | GrowingGrid |  FN-SOM |
Q ]6.2756 x 10~ | 7.1131 x 10~% | 5.0902 x 10~
U 0.8200 0.8056 1.0

5.2 For SwissRoll data

Next, we consider'SwissRoll” datausedby Tenenbaunet
al. [7], asshavn in Fig. 5. Total numberof the input data
N is 1000,andtheinputdataarenormalizedandaresorted
atrandom.

0o

Figure5: SwissRoll datafor 3-dimensionainput data.

Werepeathelearningl5timesfor all inputdata,namely
tmax = 15000. Thelearningconditionsarethe sameused
in Fig. 4 exceptor = 0.03 and ), = 300 for FN-SOM.

The learningresultsof the threealgorithmsare shavn
in Figs. 6(a)-(c), respectiely. FurthermoreFigs. 6(d)-(f)
shaw theresultsof Figs.6(a)-(c)in 2-D (namely X-Y co-
ordinate),respectrely. We canseefrom thesefiguresthat
FN-SOM canobtainthe mosteffective mapreflectingthe
distribution stateof input data.

The calculatedthe quantizationerror () and the neu-
ron utilization U areshown in Table.2. We confirm that
the quantizatiorerror (Q of FN-SOM s the smallestvalue
in the threealgorithms,and Q of FN-SOM hasimproved
14.6% from using the corventional SOM. Moreover, the
neuronutilization U of FN-SOM is thelargestvaluein the
threealgorithmsandis 1.0, which is the maximumvalue,
asin the caseof the 2-dimensionalinput data. From this
tableandFig. 6, we cansaythattheresultof FN-SOMhas
thefewestinactive neurons.

Table2: Quantizatiorerror@ andNeuronutilization U for
SwissRoll data.

SOM | Growing Grid [ FN-SOM |
Q 0.0121 0.0123 0.0104
U 0.9400 0.9821 ‘ 1.0

5.3 For Iris data

Furthermorewe apply FNN-SOM to the real world clus-
tering problem. We usethe Iris plantdata[8] asreal data.
This datais one of the bestknown databasedo be found
in patternrecognitionliteratureg9]. Thedatasetcontains
threeclustersof 50instancesespectiely, whereeachclass
refersto atypeof iris plant. Thenumberof attributesis four
asthesepalength,thesepalwidth, the petallengthandthe
petalwidth, namely the input dataare 4-dimension. The
threeclassesorrespondo Iris setosa, Iris versicolor and
Irisvirginica, respectely. Iris setosa is linearly separable
from the othertwo, however Iris versicolor and Iris vir-
ginica arenotlinearly separablérom eachother

We repeatthe learning 100 times for all input data,
namelyt,,.x = 15000. Theinputdataarenormalizedand
aresortedatrandom.Thelearningconditionsarethe same
usedin Fig. 4 exceptor = 0.02 for FN-SOM.

The calculatedquantizatiorerror (Q andthe neuronuti-
lizationU areshavn in Table.3. We confirmthatthequan-
tization error Q of FN-SOM is the smallestvalue in the
threealgorithms,and@Q of FN-SOM hasimproved 16.7%
from usingthe corventional SOM. This is becauséhere-
sult of FN-SOM hardly hasinactive neuronsbetweenlris
setosa andthe othertwo, therefore the more neuronscan
self-oiganizethe dataof Iris versicolor andlris virginica.
The neuronutilization U of FN-SOM is the largestvalue
in thethreealgorithms.Fromtheseresultswe canconfirm
theefficiency of FN-SOM.

Table3: Quantizatiorerror@ andNeuronutilization U for
Iris data.

\ SOM | GrowingGrid [ FN-SOM |
Q 0.0018 0.0027 0.0015
U 0.7300 0.7315 ‘ 0.7800

6 Conclusions

In this study we have proposeda nev SOM algorithm,
SOM with FalseNeighbordegreebetweemeurongcalled
FN-SOM). False-neighbodegreesare allocatedbetween
adjacentrows andadjacentolumnsof FN-SOM. Theini-

tial valuesof all of the false-neighbodegreesare setto

zero, however, they are increasedwith learning, and the
false-neighbodegreesact asa burdenof the distancebe-
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Figure6: Learningresultsof threealgorithmsfor SwissRoll data. (a) Corventional SOM. (b) Growing Grid. (c) FN-
SOM. (d) Resultof SOM shawn in 2-D (X-Y coordinate). (e) Resultof Growing Grid shavn in 2-D. (f) Resultof

FN-SOMshavnin 2-D.

tweenmap nodeswhenthe weight vectorsof neuronsare
updated We have appliedFN-SOMto 2-dimensionatiata,
SwissRoll dataand Iris data, and we have investigated
the learningbehaiors of FN-SOM. Furthermore the re-
sults were comparedwith thoseobtainedby the conven-
tional SOM and Growing Grid. We have confirmedthat
the quantizationerror of FN-SOM wasthe smallestvalue
in the threealgorithms. Moreover, the neuronutilization

of FN-SOM wasthe largestvaluein the threealgorithms.

Fromtheseresultswe have confirmedtheefficiency of FN-
SOM.

In the future we intendto investicate FN-SOMin more
detailin particularits usefor high-dimensionatiata.

References

[1] J. Vesantoand E. Alhoniemi, “Clustering of the
Self-OmganizingMap;” |EEE Trans. Neural Networks,
vol. 11, no.3, pp.586-6002002.

[2] T. Kohonen,Sdf-organizing Maps, Berlin, Springer
1995.

[3] B. Fritzke, “Growing Grid — a self-oiganizing net-

work with constantneighborhoodrangeand adapta-

tion strength, Neural Processing Letters, vol. 2,no.5,
pp.9-13, 1995.

[4] L. Xu, A. KrzyzakandE. Oja, “Rival penalizedcom-
petitive learningfor clusteringanalysis,RBF net,and

(5]

(6]

(7]

(8]

&

Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007)
Published by the Neuroinformatics Group, Bielefeld University, Germany
All contributions to WSOM 2007 are available online at: http://biecoll.ub.uni-bielefeld.de

curve detectiorf, IEEE Trans. Neural Networks, vol. 4,
no.4, pp.636-649,1993.

Y. CheungandL. Law, “Rival-Model PenalizedSelf-
Organizing Map;” |EEE Trans. Neural Networks,
vol. 18, no.1, pp.289-2952007.

H. Matsushitaand Y. Nishio, “Self-Organizing Map
ConsideringFalse NeighboringNeuron; Proc. of IS
CAS 07, 2007.

J. B. Tenenbaumy. de Silva andJ. C. Langford,“A
global geometricframenork for nonlineardimension-
ality reduction’, Science, vol. 290, pp. 2319-2323,
2000.

D. J.Newman,S. Hettich,C. L. Blake andC. J. Merz,
UCI Repositoryof MachineLearningDatabase]1998,
[http:/iwww.ics.uci.edumlearn/MLRepositomntml].
R. A. Fisher “The Use of Multiple Measurement
TaxonomicProblems, Annual Eugenics, no.7,partll,
pp.179-188,1936.

F
é\(
o
[~
Y/
FEY

LE
8
- 2
7\(

/s



