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Abstract— In this study, the clustering phenomenon observed
from chaotic circuits coupled by mutual inductors is investigated.
In order to analyze the phenomena, dependent variables corre-
sponding to phases of solutions for subcircuits are introduced. By
using this dependent variables, we make detailed investigation on
statistical information of the clustering for a six subcircuit case,
such as sojourn time, cluster types, and so on.

I. INTRODUCTION

Spatiotemporal phenomena observed from large-scale cou-
pled chaotic networks have attracted many researchers’ atten-
tion and have been studied strenuously by many researchers.
The studies on coupled chaotic networks are classified into
two categories. One is discrete-time systems, the other is
continuous-time systems. A lot of studies have been carried
out for discrete-time mathematical models [1][2]. However,
there have been a few studies on continuous-time real physical
systems such as electrical circuits [3][4].

In this study, we particularly focus on the clustering phe-
nomenon observed from continuous-time real physical systems
in spatiotemporal phenomena. We investigate the clustering
observed from chaotic circuits coupled by mutual inductors in
detail. By computer calculations, occurrences of the clustering
and chaotic changes of a synchronization state are confirmed.
In order to analyze the phenomena, dependent variables corre-
sponding to phases of solutions for subcircuits are introduced.
By using this dependent variables, we make detailed inves-
tigation on statistical information of the clustering for a six
subcircuit case, such as sojourn time, cluster types, and so on.

II. CIRCUIT MODEL

Figure 1 shows a circuit model. In the circuit, N iden-
tical chaotic circuits are coupled symmetrically by mutual
inductors. Each chaotic subcircuit is a symmetric version of
the circuit model proposed by Inaba et al. [5]. It consists
of three memory elements, one linear negative resistor and
one nonlinear resistor, and is one of the simplest autonomous
chaotic circuits.

First, in order to implement circuit experiments, we consider
the simplified circuit model shown in Fig. 2. In the circuit, N
identical chaotic circuits are coupled by an inductor. Then,
in order to implement computer calculations, we approximate
the i− v characteristics of the nonlinear resistor consisting of
diodes by the following function.

Fig. 1. Circuit model.

Fig. 2. Simplified circuit model.
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the circuit equations are normalized and described as

ẋk = β(xk + yk) − zk

− γ

1 + (N − 1)γ

N∑
j=1

{β(xj + yj) − zj}

ẏk = α{β(xk + yk) − zk − f(yk)}
żk = xk + yk (k = 1, 2, · · · , N)

(3)

where
f(yk) = 9

√
yk. (4)

In the following computer calculations, (3) is calculated by
using the Runge-Kutta method with step size ∆t = 0.005.

III. CLUSTERING PHENOMENON

We carried out computer calculations for the case of N =
6. Figure 3 shows computer calculated results. From Fig.
3, we can confirm occurrences of a clustering phenomenon
and chaotic changes of a synchronization state. In Fig. 3(a),
subcircuit 1 becomes in-phase synchronization state in almost
all of the time and becomes asynchronous state for subcircuits
3 and 6 at moments. While, for subcircuits 2, 4, and 5,
subcircuit 1 becomes anti-phase syncronization state in most
intervals and becomes asynchronous state occasionally. As
we can see from this figure, the cluster size of the cluster
that subcircuit 1 is a component is principally 3 under these
parameters.

By changing the parameter β, switching phenomena can
be confirmed at τ = 2500, 5000 as shown in Fig. 3(b).
In the interval [0, 2500], subcircuit 1 is almost synchronized
with subcircuits 2, 4 and 5 at anti-phase, and almost be-
comes in-phase synchronization state for subcircuits 3 and
6. Moreover, the cluster size of the cluster that subcircuit 1
belongs to is principally 3 in this interval. While, subcircuit
1 becomes in-phase synchronization state for subcircuit 2 in
the interval [2500, 5000] and for subcircuits 2 and 5 in the
interval [4000, 5000]. For subcircuits 3, 4 and 6, subcircuit
1 becomes anti-phase synchronization state in the interval
[2500, 5000]. In this interval, the cluster size for subcircuit
1 is principally 3. Furthermore, subcircuit 1 is synchronized
with subcircuits 3, 5 and 6 at anti-phase and becomes in-phase
synchronization state for subcircuits 2 and 4 in almost all of the
interval [5000, 10000]. As the other intervals, the cluster size
for subcircuit 1 is also principally 3 in this interval. Namely,
we can consider that the cluster size for subcircuit 1 is easy
to become 3 for the case of N = 6.

IV. STATISTICAL ANALYSIS

A. Introduction of Phase Variables

In this section, we investigate the clustering phenomenon in
detail. First, in order to discriminate whether each subcircuit
is synchronized or not, let us define the Poincaré section
as x1 < 0 and z1 = 0. Next, we introduce the following
independent variables from the discrete data of xk(n) and
zk(n) on the Poincaré map. The values of ϕk(n) correspond

(a) α = 20.0. β = 0.26. γ = 0.3.

(b) α = 20.0. β = 0.265. γ = 0.3.

Fig. 3. Computer calculated results for N = 6. (k = 1, 2, 3, 4, 5, 6.)
(x7 = x1.)

to the phase differences between subcircuit 1 and the others.
(Note that the argument of the point (x1(n), z1(n)) is always
π, because of the definition of the Poincaré map.) By using the
values of ϕk(n), we make detailed investigation on statistical
information of the clustering for the case of N = 6. In the
statistical analysis, we carried out computer simulations during
one hundred thousand iterations of the Poincaré map under the
following parameters; α = 20.0, β = 0.265, and γ = 0.3.

ϕk(n) =




π − tan−1 zk(n)
xk(n)

xk(n) ≥ 0

− tan−1 zk(n)
xk(n)

xk(n) < 0 and zk(n) ≥ 0

2π − tan−1 zk(n)
xk(n)

xk(n) < 0 and zk(n) < 0

(k = 2, 3, 4, 5, 6.)

(5)
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Fig. 4. Time series ϕk(n) calculated from the data xk(n) and zk(n).

B. Probability distribution of ϕk(n)
Figure 4 shows the time evolution of ϕk(n) calculated from

the data xk(n) and zk(n). Horizontal axis is the iteration
of the Poincaré map. Vertical axis is the phase difference of
each subcircuit for subcircuit 1. Switching phenomena occur at
short intervals and a synchronization state changes chaotically.
Moreover, we can see that subcircuit 1 becomes in-phase
or anti-phase synchronization state for five others with high
frequency.
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Fig. 5. Probability distributions of ϕ2(n). Horizontal slot m indicates
interval [(m − 1)π/6, mπ/6].

Figure 5 shows the probability distributions of ϕ2(n). The
probabilities of slots 1, 6, 7, and 12 are larger than the others.
We can consider that the slots 1 and 12 correspond to in-
phase states and the slots 6 and 7 correspond to anti-phase
states. This means that each subcircuit becomes in-phase or
anti-phase synchronization state with large probability. Fur-
thermore, we have confirmed that the probability distributions
of ϕk(n) become about the same probability distributions. For
the reason to become in this way, our circuit model’s symmetry
can be considered.

C. Probability distributions of sojourn time

We define that subcircuit 1 is synchronized with subcircuit
k if ϕk(n) satisfies (6). This definition of the synchronization

corresponds to the in-phase synchronization state.

−π

6
< ϕk(n) <

π

6
. (6)

Table I shows the probability distribution of the cluster size
of the cluster that subcircuit 1 is a component. “Cluster size
= 1” means that subcircuit 1 is not synchronized with the
others. Moreover, “Cluster size = 2” means that subcircuit 1
is synchronized with one of five others and not synchronized
with the others. As we can see from Tab. I, the probability of
“Cluster size = 3” is the largest and the cluster size hardly
becomes more than 4.

TABLE I

PROBABILITY DISTRIBUTION OF THE CLUSTER SIZE FOR

SUBCIRCUIT 1.

Cluster size Probability Cluster size Probability

1 0.18869 4 0.00020
2 0.30057 5 0.00000
3 0.51054 6 0.00000

While, Fig. 6 shows the probability distributions of sojourn
time. The slots in the horizontal axis of the figure denote the
ranges of the sojourn time and are summarized in Tab. II. For
example, compared Fig. 6(b) with Fig. 6(c), the probability
distributions of the slots 3, 4, and 5 of “Cluster size = 2” are
larger than those of “Cluster size = 3”. Furthermore, “Cluster
size = 3” disappears within 1 or 2 iterations of the Poincaré
map. Clearly, it is confirmed that the larger cluster size is, the
larger sojourn time is as shown in Fig. 6, except the case of
“Cluster size = 4”.
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(a) Cluster size = 1.
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(b) Cluster size = 2.
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(c) Cluster size = 3.
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(d) Cluster size = 4.

Fig. 6. Probability distributions of sojourn time.
TABLE II

RANGES OF SLOTS IN FIG. 5.

Slot Sojourn time (n) Slot Sojourn time (n)

1 1−2 5 21−50
2 3−5 6 51−100
3 6−10 7 101−200
4 11−20 8 201−500
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D. Probability distribution of various cluster types.

The probability distribution of specific cluster types for
subcircuit 1 is shown in Tab. III. For example, the probability
of the cluster type “1-2-3-4-5-6” is 2.04 × 10−3. This cluster
type means that all subcircuits become asynchronous states
and the number of clusters is 6. Then, we can confirm that the
probability of the cluster type “12-3-4-5-6” is 1.89 × 10−3.
This cluster type means that subcircuit 1 is syncronized with
subcircuit 2 and the others are not synchronized and the
number of clusters is 5. Moreover, the cluster type “12-34-5-6”
means that subcircuit 1 is synchronized with subcircuits 2 and
subcircuit 3 is synchronized with subcircuits 4 and subcircuits
5 and 6 independently oscillate and the number of clusters is
4.

While, the probability distribution of cluster types is shown
in Tab. IV. For example, the probability of the cluster type “2-
1-1-1-1” is 3.06×10−2. This cluster type means that any two
subcircuits are synchronized and the others are asynchronous
states and the number of clusters is 5. Furthermore, the
cluster type “2-2-1-1” means that any two subcircuits are
synchronized and one cluster is formed and any two others of
four subcircuits are synchronized and another cluster is also
formed and the others are independently oscillate.

V. DISCUSSION

First, we considered the probability distribution of specific
cluster types shown in Tab. III as experimental values. Then,
we considered that the statistical data shown in Tab. IV
could be calculated as theoretical figures only by using the
information shown in Tab. III. For example, the probability
P1 of the cluster type “2-1-1-1-1” can be calculated by using
the probability of the cluster type “12-3-4-5-6” as follows.

P1 = 5C1 × 0.00189 = 9.45 × 10−3. (7)
As the same way, the probability P2 of the cluster type “2-2-
1-1” can be calculated by using the probability of the cluster
type “12-34-5-6” as follows.

P2 = 5C1 × 4C2 × 0.00359 = 0.1077. (8)
Moreover, the other various probabilites can be calculated by
using the probability information shown in Tab. III. These
results are summarized in Tab. V.

The relative error between experimental values and theo-
retical figures for cluster types is shown in Tab. VI. We can
confirm that the relative errors of the cluster types “2-1-1-1-1”,
“2-2-2”, “3-1-1-1”, “4-1-1”, and “4-2” are relatively large. We
have to investigate a reason to become in this way in detail.
However, if we could calculate various probabilites shown in
Tab. IV by using a little information shown in Tab. III, it would
be quite effective for the analysis when a circuit scale is large.

VI. CONCLUSIONS

In this study, we investigated the clustering phenomenon ob-
served from chaotic circuits coupled by mutual inductors. By
carrying out computer calculations, we confirmed occurrences
of the clustering and chaotic changes of a synchronization
state for a six subcircuit case. Moreover, we made detailed

investigation on statistical information of the clustering, such
as sojourn time, cluster types, and so on.
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TABLE III

PROBABILITY DISTRIBUTION OF SPECIFIC CLUSTER TYPES FOR

SUBCIRCUIT 1.

Cluster type Probability Cluster type Probability

1-2-3-4-5-6 0.00204 123-456 0.02845
12-3-4-5-6 0.00189 1234-5-6 0.00001
12-34-5-6 0.00359 1234-56 0.00002
12-34-56 0.00055 12345-6 0.00000
123-4-5-6 0.00467 123456 0.00000
123-45-6 0.01491

TABLE IV

PROBABILITY DISTRIBUTION OF CLUSTER TYPES.

Cluster type Probability Cluster type Probability

1-1-1-1-1-1 0.00204 3-3 0.25662
2-1-1-1-1 0.03006 4-1-1 0.00033
2-2-1-1 0.10004 4-2 0.00048
2-2-2 0.00597 5-1 0.00000

3-1-1-1 0.08581 6 0.00000
3-2-1 0.51865

TABLE V

THEORETICAL FIGURE OF THE PROBABILITY DISTRIBUTION OF

CLUSTER TYPES.

Cluster type Probability Cluster type Probability

1-1-1-1-1-1 0.00204 3-3 0.28450
2-1-1-1-1 0.00945 4-1-1 0.00010
2-2-1-1 0.10770 4-2 0.00020
2-2-2 0.01650 5-1 0.00000

3-1-1-1 0.04670 6 0.00000
3-2-1 0.44730

TABLE VI

RELATIVE ERROR BETWEEN EXPERIMENTAL VALUES AND

THEORETICAL FIGURES FOR CLUSTER TYPES.

Cluster type Relative error Cluster type Relative error

2-1-1-1-1 2.18095 3-2-1 0.15951
2-2-1-1 0.07112 3-3 0.09800
2-2-2 0.63818 4-1-1 2.30000

3-1-1-1 0.83747 4-2 1.40000
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