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Abstract

The Self-Organizing Map (SOM) has problems with some in-
active neurons which have affected a result of clustering. In
this study, we propose a new SOM algorithm which is the
Disconnecting Self-Organizing Map (DSOM). In the initial
state, all neurons of DSOM are directly or indirectly con-
nected each other. However, connections between neurons
located at distant locations are cut with learning. We can
confirm that the result of using DSOM includes no inactive
neurons and DSOM can obtain a more effective map reflect-
ing the distribution state of input data than the conventional
SOM.

1. Introduction

In recent years, the Self-Organizing Map (SOM) is widely
used in classification and feature extraction tasks [1]-[5].
SOM is one of the unsupervised neural networks introduced
by Kohonen in 1982 [6] and is a model simplifying self-
organization process of the brain. In the learning algorithm
of SOM, a winner, which is a neuron with the weight vector
closest to the input vector, and its neighboring neurons are up-
dated, regardless of the distance between the input vector and
the neighboring neurons. For this reason, if we apply SOM to
clustering of input data which includes some clusters located
at distant locations, there are some inactive neurons between
the clusters. Because there are inactive neurons on an area
without the input data, we are misled into thinking that there
are some input data between clusters.

In this study, we propose a new SOM algorithm which is
the Disconnecting Self-Organizing Map (DSOM). In the ini-
tial state, all neurons of DSOM are directly or indirectly con-
nected each other. However, connections between neurons
located at distant locations are cut with learning. We explain
contours of the learning algorithm of DSOM. Each connec-
tion between neurons of DSOM has a connection strength.
The connection strength between the winner and the neuron,
which is the most distant from the input data in a set of direct
topological neighbors of the winner, is decreased with each

learning. The neuron is disconnected from the winner if the
connection strength between them becomes zero.

In Section II, we explain the learning algorithm of the
conventional SOM. In Section III, the learning algorithm of
DSOM in detail. The learning process and the behaviors of
DSOM are investigated in Section IV with an application to
clustering of 2-dimensional input data. The clustering ability
is evaluated by the visualization of the result. We can confirm
that the result of using DSOM includes no inactive neurons.
Furthermore, in Section V, we apply DSOM to feature extrac-
tion. We can see that DSOM can obtain a more effective map
reflecting the distribution state of input data than the conven-
tional SOM.

2. Self-Organizing Map (SOM)

We explain the learning algorithm of the conventional
SOM. SOM consists ofm neurons located at a regular low-
dimensional grid, usually a 2-D grid. The basic SOM algo-
rithm is iterative. Each neuroni has ad-dimensional weight
vectorwi = (wi1, wi2, · · · , wid) (i = 1, 2, · · · ,m). The ini-
tial values of all the weight vectors are given over the input
space at random. The range of the elements ofd-dimensional
input dataxj = (xj1, xj2, · · · , xjd) (j = 1, 2, · · · , N) are
assumed to be from 0 to 1.

(SOM1) An input vectorxj is inputted to all the neurons at
the same time in parallel.
(SOM2) Distances betweenxj and all the weight vectors are
calculated. The winner, denoted byc, is the neuron with the
weight vector closest to the input vectorxj ;

c = arg min
i
{‖wi − xj‖}, (1)

where‖ · ‖ is the distance measure, in this study, Euclidean
distance.
(SOM3) The weight vectors of the neurons are updated as;

wi(t + 1) = wi(t) + hc,i(t)(xj −wi(t)), (2)

wheret is the learning step.hc,i(t) is called the neighborhood
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function and is described as a Gaussian function;

hc,i(t) = α(t) exp
(
−‖ri − rc‖2

2σ2(t)

)
, (3)

where‖ri−rc‖ is the distance between map nodesc andi on
the map grid,α(t) is the learning rate, andσ(t) corresponds
to the width of the neighborhood function. Bothα(t) and
σ(t) decrease with time as follows;

α(t) = α(0)
(

α(T )
α(0)

)t/T

,

σ(t) = σ(0)
(

σ(T )
σ(0)

)t/T

,
(4)

whereT is the maximum number of the learning.
(SOM4) The steps from (SOM1) to (SOM3) are repeated for
all the input data.

3. Disconnecting SOM (DSOM)

We explain a proposed new SOM algorithm, DSOM. The
initial state of all neurons of DSOM are directly or indirectly
connected to all neuron. However, the connection between
neurons located at distant locations is cut with learning. The
connection between each neuron of DSOM has a connection
strengthCs(c,i). The initial values of all the weight vectors
are given over the input space at random.

(DSOM1) An input vectorxj is inputted to all the neurons at
the same time in parallel.
(DSOM2) Distances betweenxj and all the weight vectors
are calculated, and the rank order of distances, denoted by
k = 0, · · · ,m− 1, is calculated.ki is the rank ofwi, namely,
kc = 0 is the rank of the winnerc which is closest toxj

according to Eq. (1).
(DSOM3) The weight vectors of the neurons are updated as;

wi(t + 1) = wi(t) + hDc,i(t)(xj −wi(t)), (5)

wherehDc,i(t) is the neighborhood function of DSOM;

hDc,i(t) = α(t) exp
(
−ki + nc,i

σ2(t)

)
, (6)

wherenc,i is the neighborhood distance betweenc and each
neuroni. The neighborhood distances are defined as shortest-
path distances between connected map nodes as Fig.1(a). If
a neuroni is not connected directory or indirectly toc, nc,i is
equal to the number of neuronsm.
(DSOM4) A connection betweenc and a neuronp which is
closest toxj in Nc1 is created, if it does not exist.

p = arg min
i
{‖wi − xj‖}, i ∈ Nc1, (7)

whereNc1 is the set of direct topological neighbors ofc as
Fig. 1(b),
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(a) (b)
Figure 1: Neighborhood distances of the rectangular grid.
(a) Neighborhood distancesnc,i of c = 13. nc,14 = 1,
nc,12 = 3, nc,5 = nc,22 = m (namely, 25). (b) Discrete
neighborhoods (size 0, 1 and 2) of the centermost neuron
when all the neurons are connected.

The connection strength betweenc andp is set to initial value
(this means “refresh” the connection reference);

Cs(c,p) = Cs0, (8)

whereCs0 is the initial value ofCs.
(DSOM5) A disconnecting neuronq is found. q is the most
distant fromxj in Nc1. However, ifkq is smaller than the
number ofNc1, the disconnecting neuronq does not exist,
and we perform (DSOM7).

q = arg max
i
{‖wi − xj‖}, i ∈ Nc1. (9)

The connection strength betweenc andq is decreased;

Cs(c,q) = Cs(c,q) − ‖wq − xj‖2. (10)

(DSOM6) The disconnecting neuronq is disconnected from
the winnerc if its connection strength becomes smaller than
zero.
(DSOM7) The steps from (DSOM1) to (DSOM6) are re-
peated for all the input data.

4. Application to Clustering

We consider 2-dimensional input data as shown in Fig.2(a)
to clustering. The input data is generated artificially as fol-
lows. Total number of the input dataN is 15000, and the in-
put data include two clusters. 7500 data are distributed within
a range from 0.2 to 0.8 horizontally and from 0.1 to 0.3 verti-
cally. The remaining 7500 data are distributed within a range
from 0.2 to 0.8 horizontally and from 0.7 to 0.9 vertically. All
the input data are sorted at random.

Both the conventional SOM and DSOM hasm = 100 neu-
rons (10 × 10). We repeat the learning until all input data is
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Figure 3: Learning process of DSOM. (a) Initial state (t = 0). (b) t = 1000. (c) t = 3000. (d) t = 5000. (e) t = 7500.
(f) t = 9500. (g) t = 12500. (f) Learning result (t = 15000).
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Figure 2: Clustering of 2-dimensional input data. (a) Input
data. (b) Learning result of the conventional SOM.

inputted, namelyT = 15000. The parameters of the learning
are chosen as follows;

(For SOM)

α(0) = 0.5, α(T ) = 0, σ(0) = 5, σ(T ) = 0.

(For DSOM)

α(0) = 0.5, α(T ) = 0.05, σ(0) = 40, σ(T ) = 0.5, Cs0 = 12.

The learning result of the conventional SOM is shown in
Fig. 2(b). We can see that there are some inactive neurons
between the two clusters.

The other side, the result of DSOM and its learning process
are shown in Fig.3. We can see from Fig.3(h) that there are
no inactive neurons between the two clusters.

Let us consider the learning process. The initial states of
weight vectors of neurons are random values, and all neurons
are directly or indirectly connected each other as Fig.3(a).
In the early-stage of the learning as Figs.3(b) and (c), all
neurons are still connected mutually and all neurons are self-
organizing all input data. Furthermore, from Fig.3(d), there
are some inactive neurons because the neurons located at dis-
tant locations are not disconnected. In the middle stage as
Figs. 3(e) and (f), we can see that the connections between
neurons of the two clusters are cut, and there are no inac-
tive neurons. This is because the neurons of DSOM are not
affected by neurons which are self-organizing another clus-
ter, so, the neurons can learn more distant for the distant
input data, than the conventional SOM. In the last stage as
Figs.3(g) and (h), we can confirm that DSOM are completely
separated by two and each neuron group self-organizes each
cluster.

Figure 4 shows distances between adjacent neurons of
learning results of Figs.2(b) and3(h). This figure thus vi-
sualizes the cluster structure of the map. Black circles on this
figure mean large distance between neighboring map nodes.
Clusters are typically uniform areas of white circles. We can
see that the boundary line of DSOM is clearer than the con-
ventional SOM because DSOM has no inactive neurons.
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Figure 5:Feature extraction for doughnut-shaped data. (a) Input data. (b) Learning result of conventional SOM. (c) Learning
result of DSOM.

(a) (b)

Figure 4: Visualization of learning result. (a) Conventional
SOM. (b) DSOM.

5. Application to Feature Extraction

Furthermore, we apply DSOM to feature extraction. We
use the “doughnut”-shaped data shown as Fig.5 for the input
data. Total number of the input dataN is 2000. All the input
data are sorted at random.

We repeat the learning 7 times for all input data, namely
T = 14000. We use the same parameters as for Fig.2(a)
exceptCs0 = 11.5 for DSOM.

Figures5(b) and (c) show the learning results of the con-
ventional SOM and DSOM, respectively. From the learning
result of SOM, we can see that there are some inactive neu-
rons in the doughnut hole. However, there are no inactive
neurons in the result DSOM. This is because neurons located
at distant locations is disconnected, so, the neurons can learn
more distant for the distant input data. Therefore, DSOM can
obtain the more effective map reflecting the distribution state
of input data, than the conventional SOM.

6. Conclusions

In this study, we proposed a new SOM algorithm which is
the Disconnecting Self-Organizing Map (DSOM). In the ini-

tial state, all neurons of DSOM are directly or indirectly con-
nected each other. However, connections between neurons
located at distant locations are cut with learning. Each con-
nection between neurons of DSOM has a connection strength.
The connection strength between the winner and the neuron,
which is the most distant from the input data in a set of direct
topological neighbors of the winner, is decreased with each
learning. The neuron is disconnected from the winner if the
connection strength between them becomes zero.

The learning process and the behaviors of DSOM were in-
vestigated with applications to clustering of 2-dimensional in-
put data and feature extraction. We confirmed that the result
of using DSOM includes no inactive neuron and DSOM can
obtain the more effective map reflecting the distribution state
of input data than the conventional SOM.
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