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Abstract— In this paper, three kinds of asymmetrical global
chaotic coupled systems are investigated. The asymmetries are re-
alized by different coupling nodes or different parameters sets. In
these systems, an interesting phenomenon about synchronization
phenomena is observed. The phenomenon is that a ratio of the
synchronization time increases in spite of increasing parameter
mismatches in the system.

I. I NTRODUCTION

Many researchers have focused on engineering applica-
tions of chaos, for instance, chaotic communication systems,
chaotic control, chaotic synchronization and so on. Especially,
chaotic synchronization is very interesting phenomenon that
chaotic subsystems are synchronized in spite of different ini-
tial values[1]. Additionally, coupled chaotic systems generate
various kinds of complex higher-dimensional phenomena such
as spatio-temporal chaotic phenomena, clustering phenomena
and so on. One of the most studied systems may be the
coupled map lattice proposed by Kaneko[2]. The advantage
of the coupled map lattice is its simplicity. However, many
of nonlinear phenomena generated in nature would be not so
simple. Therefore, it is important to investigate the complex
phenomena observed in natural physical systems such as
electric circuits systems[3]-[4].

In this study, three kinds of asymmetrical global coupled
chaotic systems are investigated. Especially, we paid atten-
tion to relationships between synchronization phenomena and
small parameter mismatches. In all systems, an interesting
phenomenon is observed. The phenomenon is that a ratio of the
synchronization time increases in spite of increasing parameter
mismatches in the system.

In the Sect. 2, proposed systems and its circuit equations
are shown. In the Sect. 3, computer simulation results of each
systems are shown. Relationships between synchronization
phenomena and small parameter mismatches are also shown.
Some concluding remarks is presented in the Sect. 5.

II. PROPOSEDSYSTEMS

A proposed system is shown in Fig. 1. This system consists
of two kinds of subcircuits and resistors as coupling elements.
Subcircuits are coupled globally. An asymmetry of the system
is realized by using two kinds of subcircuits ( subcircuit A and
B ). In this study, the number of subcircuit A and B are shown
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Fig. 1. Proposed system.
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Fig. 2. Diode model.

asm andn, respectively. The numbers of subcircuit A and B
are two and three. Actual systems are shown in following three
subsections. Additionally, in order to carry out the computer
simulations, the circuit equations are derived. In all systems,
the diode model is a piecewise linear function shown in Fig. 2.
Small parameter mismatches of Subcircuit A and B arepk and
qk, respectively.

A. System 1

The subcircuit of System 1 is shown in Fig. 3. This chaotic
circuit is a simple three-dimensional autonomous circuit pro-
posed by Shinriki et al.[6]. By selecting one of two coupling
nodes(A-node and B-node), an asymmetry of the system is
realized. Using following variables and parameters,
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Fig. 3. Subcircuit 1.
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Normalized circuit equations are described as follows: Subcir-
cuit A (1 ≤ k ≤ m):




ẋk = αβxk − αγf(xk − yk)

+αδ{
m+n∑

i=n+1

xi +
n∑

j=1

yj − (m + n)xk},

ẏk = γf(xk − yk)− zk,

żk = (1 + pk)yk.

(2)

Subcircuit B (m + 1 ≤ k ≤ m + n):




ẋk = αβxk − αγf(xk − yk),

ẏk = δ{
m+n∑

i=n+1

xi +
n∑

j=1

yj

−(m + n)yk}+ γf(xk − yk)− zk,

żk = (1 + qk)yk,

(3)

The nonlinear functionf(x) corresponding to the characteris-
tics of the diodes is described as follows:

f(x) = x +
(|x− 1| − |x + 1|)

2
.

B. System 2

The subcircuit of System 2 is same as the subcircuit of
System 1. However, only A-node is used in this system.
An asymmetry of the system is realized as a difference of
parameters. Namely, parameters of subcircuit A in Fig. 1 is
different from subcircuit B. Using the following parameters
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Fig. 4. Subcircuit 2.

and variables,
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Normalized circuit equations are described as follows:
Subcircuit A (1 ≤ k ≤ m):



ẋk = αβxk − αγf(xk − yk)

+αδ

{
m+n∑
i=1

xi − (m + n)xk

}
,

ẏk = −zk + γf(xk − yk),

żk = (1 + pk)yk,

(5)

Subcircuit B (m + 1 ≤ k ≤ m + n):


ẋk = εβxk − εγf(xk − yk)

+εδ

{
m+n∑
i=1

xi − (m + n)xk

}
,

ẏk = ζ {−zk + γf(xk − yk)} ,

żk = η(1 + qk)yk,

(6)

where,

f(x) = x +
(|x− 1| − |x + 1|)

2
.

C. System 3

The subcircuit of System 3 is shown in Fig. 4. This chaotic
circuit was proposed by Inaba et al.[7]. Using the following
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parameters and variables,

xk =
√

L1a

Ca

ik1

Vth
, yk =

√
L1a

Ca

ik2

Vth
, zk =

vk

Vth
,

t =
√

L1aCaτ, “ · ” =
d

dτ
, α =

L1a

L2a
,

β = ga

√
L1a

Ca
, γ = rd

√
Ca

L1a
, δ = G

√
L1a

Ca
,

ε =
L1a

L1b
, ζ =

L1a

L2b
, η =

Ca

Cb
,

and θ =
gb

ga
.

(7)

Normalized circuit equations are described as follows:
Subcircuit A (1 ≤ k ≤ m):



ẋk = (1 + pk)zk

ẏk = α {zk − f(yk)} ,
żk = −xk − yk + βzk

+δ{
m+n∑
i=1

zi − (m + n)zk, }
(8)

Subcircuit B (m + 1 ≤ k ≤ m + n):


ẋk = (1 + qk)zk

ẏk = ζ {zk − f(yk)} ,
żk = η[−xk − yk + βθzk

+δ{
m+n∑
i=1

zi − (m + n)zk, }]
(9)

where,

f(yk) =
γyk + 1− |γyk − 1|

2
.

III. C OMPUTERSIMULATION

At first, each results of the computer simulations are shown.
Figures 5 are examples of the computer simulation results on
System 2. Double scroll type attractors are observed on the
each subcircuits. In the case of System 1, similar attractors
can be observed. Figures 6 are examples of the computer
simulation results on System 3. Rossler type attractors are ob-
served. Figure 7 shows the voltage differences between each
� �
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(a) Subcircuit A (k = 1) (b) Subcircuit B (k = 3)

Fig. 5. Attractors of System 1. Horizontal axes arexk and vertical axes are
zk.
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(a) Subcircuit A (k = 1) (b) Subcircuit B (k = 3)

Fig. 6. Attractors of System 1. Horizontal axes arexk and vertical axes are
zk.

subcircuits in the case of System 2. Vertical axes show voltage
differences and horizontal axes show time. Namely, in the
case of synchronizing two subcircuits, the amplitude becomes
zero. First graph shows the voltage difference between the
two subcircuit A. Synchronizations and un-synchronized burst
appear alternately in a random way. The second graph shows
the voltage difference between subcircuit A and subcircuit B.
These are not synchronized at all. The third and fourth graphs
show the voltage differences between two subcircuit B. In the
Systems 1 and 3, similar results are observed.

x1 − x2

x2 − x3

x3 − x4

x4 − x5

Fig. 7. Voltage differences between two subcircuits in the case of System 2.

Next, the relationship between the synchronization and
small parameter mismatches are investigated. In order to inves-
tigate it, the synchronization is defined as following equation
and figure.

synchronization

Fig. 8. Definition of the synchronization.

|xk − xk+1| < 0.01 (10)

Figure 9 shows ratios of the synchronization time and total
time in the case of System 1.Q is shown as following
equation.

qk = Q(k − 1) (11)

Q is corresponding to small parameter mismatchesqk of
subcircuit B group. By increasing small parameter mismatch
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Fig. 9. Relationship of the ratio of the synchronization time and small
parameter mismatches in the case of System 1.m = 2, n = 3, pk =
0.001(k − 1), α = 0.400, β = 0.500, γ = 20.0 and δ = 0.070

Fig. 10. Relationship of the ratio of the synchronization time and small
parameter mismatches in the case of System 2.m = 2, n = 3, pk =
0.001(k − 1), α = 0.600, β = 0.500, γ = 20.0, δ = 0.070, ε = 0.6,
ζ = 1.5 and η = 0.5.

of subcircuit B group, the synchronization time of subcircuit
A group is increased. Namely, in spite of increasing small
parameter mismatches of the system, the synchronization time
of subcircuit A group is increased. Figure 10 and Figure 11
show the case of System 2 and 3, respectively. In these case,
periodic orbits are observed on some valueQ. In particular,
Q = 0.004 andQ = 0.005 in the case of System 2 andQ =
0.08 in the case of System 3. Excepting periodic orbits, the
synchronization time of subcircuit A group is also increased
by increasing small parameter mismatch of subcircuit B group.
On all systems, we can also observe the case of decreasing
the synchronization time when increasing small parameter
mismatches of subcircuit B group in other parameters of
subcircuit A group and B group. We suppose that the phe-
nomenon can be explained as follows. The synchronizations
of the one subcircuit group and the other subcircuit group are
constricted each other. Therefore, in the case of decreasing the
synchronization of one group, the synchronization of the other
group increases.

Fig. 11. Relationship of the ratio of the synchronization time and small
parameter mismatches in the case of System 3.m = 2, n = 3, pk =
0.001(k− 1), α = 0.600, β = 0.400, γ = 100.0, δ = 0.060, ε = 1.4,
ζ = 7, η = 0.5, and θ = 1.2.

IV. CONCLUSION

In this study, three kinds of asymmetrical global chaotic
coupled systems are proposed and investigated. In the case
of five subcircuits, we confirmed synchronization phenomena.
Additionally, It was confirmed that the synchronization time
ratio of one subcircuit group are increased by decreasing the
synchronization time ratio of the other subcircuit group. We
suppose that the phenomenon can be explained as follows.
The synchronizations of the one subcircuit group and the
other subcircuit group are constricted each other. Therefore,
in the case of decreasing the synchronization of one group,
the synchronization of the other group increases.
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