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Abstract— In this research, synchronization phenomena ob-
served from simple chaotic circuits with asymmetric coupling
by nonlinear mutual inductors are investigated. A simple three-
dimensional autonomous circuit is considered as a chaotic
subcircuit. By carrying out computer calculations for some
cases, various kinds of synchronization phenomena of chaos are
observed.

I. INTRODUCTION

Many nonlinear dynamical systems in various fields have
been confirmed to exhibit chaotic oscillations. Recently ap-
plications of chaos to engineering systems are expected such
as chaos noise generators, control of chaos, synchronization
of chaos, and so on. In those applications, we are especially
interested in synchronization of chaos. Synchronization and
the related bifurcation in chaotic systems are good models
to describe various high-dimensional nonlinear phenomena in
the field of natural science and many excellent studies on syn-
chronization of chaos have been reported. Now mechanisms
of chaotic phenomena generated in low-dimensional systems
have been elucidated theoretically, and complex phenomena
observed from higher dimensional circuits represented by
coupled plural chaotic circuits attract attentions [1]-[5].

In our previous research, quasi-synchronization phenomena
observed from simple chaotic circuits coupled by linear mutual
inductors were investigated [6]. We could observe various
kinds of synchronization phenomena of chaos by carrying out
computer calculations for two or three subcircuits cases. In the
two subcircuits case, in-phase and anti-phase synchronization
were observed. Moreover in-phase and three-phase synchro-
nization were observed in the three subcircuit case.

In this research, synchronization phenomena observed from
simple chaotic circuits with asymmetric coupling by nonlinear
mutual inductors are investigated. A simple three-dimensional
autonomous circuit is considered as a chaotic subcircuit.
This subcircuit is a symmetric version of the chaotic circuit
proposed by Inaba et al. [7]. They used an ideal piecewise
linear model of diodes in [7], but in this research the i − v
characteristics of the nonlinear resistor consisting of diodes
are approximated by a smooth function. This is more real
than piecewise linear approximation in the sense that every
real elements in the natural field are not piecewise linear.
By carrying out computer calculations, various kinds of
synchronization phenomena of chaos are observed.

II. CIRCUIT MODEL

Fig. 1. Circuit model.

Figure 1 shows the circuit model. In the circuit, three iden-
tical chaotic circuits are coupled asymmetrically by nonlinear
mutual inductors. Each chaotic subcircuit consists of three
memory elements, one linear negative resistor and one nonlin-
ear resistor, which is realized by connecting some diodes, and
is one of the simplest autonomous chaotic circuits. First, we
approximate the i− v characteristics of the nonlinear resistor
by the following function.

vd(ik) = 9
√

rd ik. (1)

Further, the φ − i characteristics of the nonlinear inductor in
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Fig. 2. φ− i charactristics of the nonlinear inductor.

Fig. 2 is described as following function.

Ik =
φk

L2
+

( 1
L1

− 1
L2

) |φk + Φ| − |φk − Φ|
2

. (2)

By changing the variables and parameters,

t =
√

L1 C τ, a = 8

√
rd

√
C

L1
, “ · ” =

d

dτ
,

φk = a
√

L1 C xk, ik = a

√
C

L1
yk, vk = a zk,

α =
L1

L0
, β = r

√
C

L1
, γ =

L2

L0
, δ =

Φ
a
√

L1 C
.

(3)

the circuit equations are normalized and described as

ẋ1 =
1

1 + m1 − 2m1m2

(1−m1m2

1−m1
{β(X1 + y1)− z1}

− m1(1−m2)
1−m1

{β(X2 + y2)− z2}

−m2{β(X3 + y3)− z3}
)

ẋ2 =
1

1 + m1 − 2m1m2

(1−m1m2

1−m1
{β(X2 + y2)− z2}

− m1(1−m2)
1−m1

{β(X1 + y1)− z1}

−m2{β(X3 + y3)− z3}
)

ẋ3 =
1

1 + m1 − 2m1m2

(
(1 + m1){β(X3 + y3)− z3}

−m1{β(X1 + y1)− z1}

−m1{β(X2 + y2)− z2}
)

ẏk = α{β(Xk + yk)− zk − f(yk)}

żk = Xk + yk (k = 1, 2, 3)
(4)

where

Xk =
α

γ
xk +

(
1− α

γ

) |xk + δ| − |xk − δ|
2

.

f(yk) = 9
√

yk.

(5)

III. COMPUTER CALCULATED RESULTS

In this section, we perform computer calculations for some
cases. First, we consider the case where parameter m1 is much
larger than parameter m2. In this case, one subcircuit is not
easy to interact with the other subcircuits. Next, the case where
parameter m1 is almost equal to parameter m2 is considered.
All subcircuits dominantly interact in this case. The parameter
values corresponding to the inductors are fixed as α = 20.0, γ
= 10.0 and (4) is calculated by using the Runge-Kutta method
with step size ∆t = 0.001.

A. Case for m1 � m2

We set the parameter values m1 = 0.2 and m2 = 0.02 in
this case. Subcircuit 3 is not easy to interact with subcircuits
1 and 2. Therefore subcircuit 3 becomes asynchronous to the
others.

(a)

(b)

(c)

(d)

(e)

(1) (2) (3) (4)

Fig. 3. In-phase synchronization for case A. m1 = 0.2. m2 = 0.02.
δ = 0.5. (a) β = 0.15. (b) β = 0.18. (c) β = 0.181. (d) β = 0.2. (e)
β = 0.23. (1) x1 vs. z1. (2) x3 vs. z3. (3) x1 vs. x2. (4) x1 vs. x3.

Figure 3 shows the in-phase synchronization and the asyn-
chronous state. From Figs. 3(1) and (3), we can confirm that
the attractors observed from subcircuit 1 and 2 bifurcate to
chaotic attractors keeping in-phase synchronization (a)-(d).
While, the attractor observed from subcircuit 3 bifurcates to
chaotic attractor via period-doubling route Figs. 3(2)(a)-(e). In
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(a)

(b)

(c)

Fig. 4. Bifurcation diagram for the in-phase synchronization. m1 = 0.2. m2
= 0.02. δ = 0.5. (a) Horizontal: β. Vertical: x1. (b) Horizontal: β. Vertical:
x3. (c) Horizontal: β. Vertical: x1 − x2.

order to investigate the bifurcation route in detail, we made
one-parameter bifurcation diagrams. The poincare section is
defined as z1 = 0, x1 < 0. Figure 4 shows the bifurcation
diagram for in-phase synchronization. From these figures, we
can confirm the bifurcation route via period-doubling. We can
also confirm that breakdown of chaos synchronization around
β = 0.223 from Fig. 4(c).

Next, we also investigate the anti-phase synchronization by
changing the initial values. Figures 5(a) and (b) shows the
anti-phase synchronization for subcircuit 1 and 2. While, the
attractors observed from subcircuit 3 become asynchronous
state. Figure 6 shows bifurcation diagram for anti-phase
synchronization. As parameter β increases, the anti-phase
synchronization becomes unstable and the in-phase synchro-
nization is observed around β = 0.2 as Fig. 5(3)(c) and Fig. 6.

B. Case for m1 ≈ m2

In this case, we set the parameter values m1 = 0.2
and m2 = 0.19. Therefore, subcircuit 3 is easy to interact
subcircuit 1 and 2.

First, we investigate the in-phase synchronization. Figure 7
shows that all subcircuits are synchronized at in-phase. How-

(a)

(b)

(c)

(d)

(1) (2) (3) (4)
Fig. 5. Anti-phase synchronization for case A. m1 = 0.2. m2 = 0.02. δ =
0.5. (a) β = 0.02. (b) β = 0.18. (c) β = 0.2. (d) β = 0.23. (1) x1 vs. z1. (2)
x3 vs. z3. (3) x1 vs. x2. (4) x1 vs. x3.

ever as β increases, the in-phase synchronization becomes
unstable and breaks down (c),(d).

Next, the three-phase synchronization is observed by chang-
ing the initial values. Figure 8 shows the three-phase syn-
chronization. From this figure, we can confirm that each
one-periodic attractor (a) bifurcates to torus (b), and as β
increases, the torus bifurcates to chaos (c) and the chaos
grows as (d). Figure 9 shows bifurcation diagram of the three-
phase synchronization. We can confirm that the bifurcation
route of the three-phase synchronization from Fig. 9, namely
bifurcation of the one-periodic solution to torus around β =
0.203, the generation of chaotic solution for β values more
than 0.215 and the generation of periodic solution around β
= 0.225.

IV. CONCLUSIONS

In this research, we investigated quasi-synchronization phe-
nomena observed from simple chaotic circuits with asymmet-
ric coupling by nonlinear mutual inductors. By carrying out
the computer calculations, we confirmed that various quasi-
synchronization phenomena of chaos were observed.

In the future, we investigate phenomena observed from the
case which four or more subcircuit are coupled asymmetrically
by nonlinear mutual inductors.
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Fig. 6. Bifurcation diagram for the anti-phase synchronization. m1 = 0.2.
m2 = 0.02. δ = 0.5. (a) Horizontal: β. Vertical: x1. (b) Horizontal: β. Vertical:
x3. (c) Horizontal: β. Vertical: x1 + x2.
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Fig. 7. In-phase synchronization for case B. m1 = 0.2. m2 = 0.19. δ = 1.5.
(a) β = 0.15. (b) β = 0.23. (c) β = 0.26. (d) β = 0.27. (1) x1 vs. z1. (2) x3
vs. z3. (3) x1 vs. x2. (4) x1 vs. x3.
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(5)

Fig. 8. Three-phase synchronization for case B. m1 = 0.2. m2 = 0.19. δ =
1.5. (a) β = 0.15. (b) β = 0.2. (c) β = 0.22. (d) β = 0.24. (1) x1 vs. z1. (2)
x3 vs. z3. (3) x1 vs. x2. (4) x1 vs. x3. (5) Time waveform for β = 0.22.

Fig. 9. Bifurcation diagram for the three-phase synchronization. m1 = 0.2.
m2 = 0.19. δ = 1.5. Horizontal: β. Vertical: x1.
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