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Abstract— In this study, phase synchronization behavthere are many problems which should be solved in large
ior and control of its patterns in coupled chaotic maps arscale coupled network systems by their complexity.
investigated. There are many types of chaotic map, thenin this study, spatio-temporal chaotic behavior in cou-
coupled chaotic systems yield wide variety of compleyled chaotic maps is investigated from the point of view
phenomena and further it is shown possibility to several efm more faithful natural world. The chaotic map which
gineering applications. The chaotic maps which have beg¢ras been governed Inyth power polynomial or sinusoidal
governed byi-th power polynomial or sinusoidal functions functions is properly selected as a chaotic cell. We con-
is properly selected as a chaotic cell, then each chaotic mgijaler the model which chaotic cells are mutually connected
is connected to neighbors as a ring array or network strug neighbors as a ring structure (i.e. CML type) by arbi-
ture. Several phase synchronization patterns and its contt@ry coupling strength. Then, we show some phenomena
method are shown. which spatio-temporal chaos, complex behavior and sev-
eral phase patterns can be found in the proposed coupled
systems. Furthermore, its control dynamics are realized by

1. Introduction changing a perturbation parameter.

We have now interests how to various patterns in na-
ture were cleated. Coupled chaotic systems attract magy
researchers’ attention as a good model which can realize

the complicated phenomena in the natural world, and fur- cpaqtic maps are generally used for several approaches
ther its dynamics can yield a wide variety of complex 'anqlo investigate chaotic phenomena on coupled chaotic sys-
strange phenomena. The coupled systems existing in Naws  Especially, the logistic map and the other types of
ture exhibit great variety of phenomena such as complg}, o otic maps such as a cut map, a circle map, a tent map,
mechanisms for all of the systems in the universe. ThesEqic map are well known and popular. Obviously, it is
phenomena can be found in a metabolic network, a Numap.cessary to have a lot of equilibrium points with the com-

society, the process of a life, self organization of neuron,g'ex phenomena that corresponds to the natural world. Let

biological system, an ecological system and so many nof}s consider two types of chaotic map. Firstly, the chaotic

linear systems. Among the studies on such coupled SYs;a from am-th power polynomial function written as fol-
tems, many interesting researches relevant to the spat|gy,s

temporal chaos phenomena on the coupled chaotic systems

have been studied until now, e.g. mathematical model in n.

one- or two-dimensional network investigated earnestly by  f(x) = Z ax +¢ (1)
Kaneko [1]-[4], and found in physical circuit model [5]. i=1

The construction of multi-agent system on the coupled

cubic map system has been reported [6]. Moreover, réhere g is a parameter which can determine for their
search of complicated phenomena and emergent propegfjaotic feature, furthep is a new parameter for perturba-
in the coupled cubic maps on 2-dimensional network sy$ion as a small variable value. The parameteshould be
tem has been also reported [7]. The studies of coupled magrmally set as zero. If it is needed to adopt the map with
lattice(CML), globally coupled maps(GCM) and so many'€spect to the origin, odd-numbered fiagentsa are only
studies concerned with such complex systems provided g€t suitable values in (1). In other words, even-numbered
tremendous interesting phenomena. This is an interestigg€ficients are set as all zero. Then, we can easily confirm
report that phase dynamics are controlled due to change it it generates chaos in this function. The some diagrams
parameter themselves. We had also reported the resea@iihe function (1) are shown in Fig. 1 with some equilib-
on spatio-temporal phase patterns in coupled maps usingdlam points.

fifth-power function [8][9], in which it has been carried out Secondary, the chaotic map from a sinusoidal function
in the unique case. However many coupled chaotic systemsitten as follows.

have wide variety of features and moreover its dynamics is

also expected to be applied much engineering applications,  f(x) = €™ sin@x) + bx+ ¢ 2)

Model Description
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Figure 1: Several chaotic maps hyth power polynomial
and sinusoidal functions fap = 0. Setting parameters:
(@n=3,a3 =-275,a = 275, (b)n = 5, a5 = 5.50, Pl
az = =100, = 417, (c)n = 7,a; = -2.85,a; = 116,
az = -14.6,a = 5.80, (d)n = 9,a9 = 2.08,a; = -1315,
as = 27.4,a3 = -213, a1 = 5.46, (e) sin(1@) + 0.5x, (f) 2.0
e 0 S|n(10<) +0.9x, and the others are all 0. -1.0 55 00 05 1.0

|

Figure 2: Bifurcation diagram and Lyapunov exponent: (a)
wherea, b andc are parameters which can determine fochanginga; for a; = —3.10,a5 = 115 andag = —124 in
their chaotic feature. Especially the paramétés an im- case oh = 7, (b) changind for a = 10.0 andc = —-0.90 in
portant factor in order to suppress its divergence. The sonsase of using sinusoidal function (2).
diagrams of the function (2) are also shown in Fig. 1. From
(1) and (2), it can be calculated rigorously several bifurca-
tion conditions and boundary region. is seen. Therefore chaotic maps possessing several equilib-
In order to evaluate the function (1), Lyapunov exponemntium points can yield various wide interesting behavior.
can be calculated as follows.

N .

i Z Iog‘df(xk) - 3. Phase Patterns in Coupled Chaotic Maps

Noeod dx In this section, we consider a coupled chaotic system that

one of these maps as a chaotic subsystem in each cell. It

Lyapunov exponent is a very important measurement ofteran be considered easily that coupled chaotic systems have
used to show the existence of chaos. Some Lyapunov expeide variety of phase patterns. The term “spatio-temporal”
nents with bifurcation diagram by changing one parametés extensively used for irregular dynamical behavior ob-
are shown in Fig. 2. These are typical results which caserved from large scale complex systems of the relevant
be obtained from computer calculation. In case of usingp both time and space. In this study, in order to confirm
polynomial functions, period doubling and tangent bifurspatio-temporal chaos or phase patterns in the faithful nat-
cation can be confirmed. On the other hand, in case of usral world, consider a coupled model of the chaotic maps
ing sinusoidal functions, complicated bifurcation propertyhich are connected to neighbors on a ring array structure
can be confirmed even if the result of Lyapunov exponeras shown in Fig. 3. Each chaotic cell is connected to neigh-
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Figure 3: Coupled chaotic system as a ring array or couplec
lattice structure.

swsofhmd il

bors by arbitrary coupling strength The total system by
CML is represented as

X(t+1) = (1-2)f(x(t))

+g(f(xk—1(t)) + f(Xk+1(t)))’ )
(k=12--,N)

wheret is an iteration,k is an index number of the cell
which follows the cyclic rule, andN is a size of coupled
cell number, respectively.

Some numerical simulation results of model (4) foe
50 are shown in Fig. 4 with coupling strengtk 0.30. The
initial condition for each cell is given ag(0) € [0.49,0.51]
uniformly. The figure indicates a grade of synchroniza-
tion state for phase flerence, with gray scale colors be-
tween white[ | and blackjlj which correspond to syn-  * o b i
chronous and asynchronous state, respectively. Hereby th =t eyl ‘ ‘
synchronous state with gray scale colors in 100 steps is dis
played. A lot of interesting phenomena were confirmed
though all the results can not be represented more here.

4. Pattern Dynamics and Control

49-50)

Further, we attempt to control phase patterns of entire
coupled system to become synchronous state with addi- (©)
tional swing of function or changing the coupling strength.

As shownin Fig. 4, it is confirmed that some parts are asyn-
chronous state. Although all subsystem is the same, it is ,_
difficult to perform to control entire system synchronously.
However control method should be simple as possible.
Therefore, we propose two simple methods below.

(method 1)
ek=¢&" if X=Xl <05
(method 2) oati

g =¢&" if |X¢ — Xge1| < 0.5

o= { _81 !; X = 8 Figure 4: Simulation results of phase synchronization state
+ T X< in coupled chaotic maps as a ring array fr= 50: (a)
= 6.20,a3 = -100, a; = 410, (b)n = 7
285 as = 116,a3 = -14.6,a; = 5.80, (c)n =
ag = 208 a; = -1315,a5 = 27.4,a3 = 213, = 546

In case of method 1, it is changed only coupling pararrf1
etergg in each cell. When the value offt&rence between &
two neighbors is larger than 0.5, the coupling strength 0.9 o . .
of the target cell changes tJ. In case of method 2, we ?hnd (d)((aj't' ) ST(Olgg +0.9x. Each resultis performed in
use the condition of swing parametgiin addition to the € conditione = U.30.
method 1. Figure 5 shows a pattern obtained by method
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Tab
ting

le 1: Increase ratio of synchronous state when the set-

parameters are the same as figure 4.
8*
04]05]06]07] 08
n=51]117| 44 | 6.7 | 9.0 | 11.7
n=7| 9.1 | 134|145 15.0| 134
n=91]218]239| 25.3| 289 | 25.8
esin| 64 | 6.0 | 25 | -6.1 | -12.1| [%)]

Table 2: Increase ratio of synchronous state when the set-
ting parameters are the same as figure 4 with swing param-
50 etergp.
8*
0 ‘ ‘ ‘ ‘ 03] 047057067077 08
0 200 400 600 800 1000 n=5|-81[-07[-09| 08| 43| 27
(b) n=7| 17.1| 20.8 | 20.8| 34.1| 22.8| 153
n=9| 80 | 16.3| 17.3| 176 | 18.7| 15.6
Figure 5: Simulation results of pattern dynamics with con- ["e‘sin [ -0.1 | 6.6 | 6.0 | 2.4 | -6.1 | -12.2|[%]
trol method 2: (a)n = 7, ay = -285, a5 = 116,
ag = —14.6, a; = 5.80, (b) transition of synchronous ra-
tio. Each result is performed in the condition of change
parameters = 0.30 &* = 0.50 andy = +0.1. Acknowledgment
This work was partly supported by GRANT-IN-AID for

"Open Research Center” project from MEXT, Japan.

2 when the control is executed tat 200. A lot of parts

are made synchronous can be confirmed. To clarify a syn-
chronous ratio, the efierence of the adjoined cells counted
the number of 0.2 or less and it was calculated. The mearh]
values of the increase ratio before and after the control
when the initial condition is changed and tries it 1000 times
are shown in Table 1 and 2. The result that either was ex-
cellent was not obtained because two methods were carriet?]
out by a specific parameter, and the control method should
be changed according to the characteristic of the chaotigy
map. Therefore, it is necessary to investigate whether other
parameters are changed, and which control method is ex-
cellent though only control by the change in the coupling
strength and the swing parameter were used in this experi
ment.

5. Conclusions (5]

In this paper, some chaotic maps th power poly-
nomial or sinusoidal functions for using as a chaotic cell [6]
of coupled network have been proposed. Some illustrated
computer simulation results of spatio-temporal chaotic be-
havior and several phase patterns in coupled chaotic map[%]
have been shown. The simple method for controlling the
patterns has been proposed, and tffiectiveness has been
investigated. We conclude that the supposed or similar cou-
pled chaotic systems can be regarded as a good model fd#l
realizing complex phenomena in the universe concerned
with self organization, mechanisms of pattern formation
and so on. However some studies of pattern dynamics angb;
the mechanism of clustering phenomena in such complex
phenomena and many works have been left.
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