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Abstract— In this study, phase synchronization behav-
ior and control of its patterns in coupled chaotic maps are
investigated. There are many types of chaotic map, then
coupled chaotic systems yield wide variety of complex
phenomena and further it is shown possibility to several en-
gineering applications. The chaotic maps which have been
governed byn-th power polynomial or sinusoidal functions
is properly selected as a chaotic cell, then each chaotic map
is connected to neighbors as a ring array or network struc-
ture. Several phase synchronization patterns and its control
method are shown.

1. Introduction

We have now interests how to various patterns in na-
ture were cleated. Coupled chaotic systems attract many
researchers’ attention as a good model which can realize
the complicated phenomena in the natural world, and fur-
ther its dynamics can yield a wide variety of complex and
strange phenomena. The coupled systems existing in na-
ture exhibit great variety of phenomena such as complex
mechanisms for all of the systems in the universe. These
phenomena can be found in a metabolic network, a human
society, the process of a life, self organization of neuron, a
biological system, an ecological system and so many non-
linear systems. Among the studies on such coupled sys-
tems, many interesting researches relevant to the spatio-
temporal chaos phenomena on the coupled chaotic systems
have been studied until now, e.g. mathematical model in
one- or two-dimensional network investigated earnestly by
Kaneko [1]-[4], and found in physical circuit model [5].
The construction of multi–agent system on the coupled
cubic map system has been reported [6]. Moreover, re-
search of complicated phenomena and emergent property
in the coupled cubic maps on 2-dimensional network sys-
tem has been also reported [7]. The studies of coupled map
lattice(CML), globally coupled maps(GCM) and so many
studies concerned with such complex systems provided us
tremendous interesting phenomena. This is an interesting
report that phase dynamics are controlled due to change its
parameter themselves. We had also reported the research
on spatio-temporal phase patterns in coupled maps using a
fifth-power function [8][9], in which it has been carried out
in the unique case. However many coupled chaotic systems
have wide variety of features and moreover its dynamics is
also expected to be applied much engineering applications,

there are many problems which should be solved in large
scale coupled network systems by their complexity.

In this study, spatio-temporal chaotic behavior in cou-
pled chaotic maps is investigated from the point of view
in more faithful natural world. The chaotic map which
has been governed byn-th power polynomial or sinusoidal
functions is properly selected as a chaotic cell. We con-
sider the model which chaotic cells are mutually connected
to neighbors as a ring structure (i.e. CML type) by arbi-
trary coupling strength. Then, we show some phenomena
which spatio-temporal chaos, complex behavior and sev-
eral phase patterns can be found in the proposed coupled
systems. Furthermore, its control dynamics are realized by
changing a perturbation parameter.

2. Model Description

Chaotic maps are generally used for several approaches
to investigate chaotic phenomena on coupled chaotic sys-
tems. Especially, the logistic map and the other types of
chaotic maps such as a cut map, a circle map, a tent map,
a cubic map are well known and popular. Obviously, it is
necessary to have a lot of equilibrium points with the com-
plex phenomena that corresponds to the natural world. Let
us consider two types of chaotic map. Firstly, the chaotic
map from ann-th power polynomial function written as fol-
lows.

f (x) =

n∑

i=1

ai x
i + ϕ (1)

where ai is a parameter which can determine for their
chaotic feature, furtherϕ is a new parameter for perturba-
tion as a small variable value. The parameterϕ should be
normally set as zero. If it is needed to adopt the map with
respect to the origin, odd-numbered coefficientsai are only
set suitable values in (1). In other words, even-numbered
coefficients are set as all zero. Then, we can easily confirm
that it generates chaos in this function. The some diagrams
of the function (1) are shown in Fig. 1 with some equilib-
rium points.

Secondary, the chaotic map from a sinusoidal function
written as follows.

f (x) = ec|x| sin(ax) + bx+ ϕ (2)
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Figure 1: Several chaotic maps byn-th power polynomial
and sinusoidal functions forϕ = 0. Setting parameters:
(a) n = 3, a3 = −2.75, a1 = 2.75, (b)n = 5, a5 = 5.50,
a3 = −10.0, a1 = 4.17, (c)n = 7, a7 = −2.85, a5 = 11.6,
a3 = −14.6, a1 = 5.80, (d)n = 9, a9 = 2.08,a7 = −13.15,
a5 = 27.4, a3 = −21.3, a1 = 5.46, (e) sin(10x) + 0.5x, (f)
e−0.9|x| sin(10x) + 0.9x, and the others are all 0.

wherea, b andc are parameters which can determine for
their chaotic feature. Especially the parameterb is an im-
portant factor in order to suppress its divergence. The some
diagrams of the function (2) are also shown in Fig. 1. From
(1) and (2), it can be calculated rigorously several bifurca-
tion conditions and boundary region.

In order to evaluate the function (1), Lyapunov exponent
can be calculated as follows.

λ = lim
N→∞

N∑

k=1

log
∣∣∣∣∣
d f(xk)

dx

∣∣∣∣∣ (3)

Lyapunov exponent is a very important measurement often
used to show the existence of chaos. Some Lyapunov expo-
nents with bifurcation diagram by changing one parameter
are shown in Fig. 2. These are typical results which can
be obtained from computer calculation. In case of using
polynomial functions, period doubling and tangent bifur-
cation can be confirmed. On the other hand, in case of us-
ing sinusoidal functions, complicated bifurcation property
can be confirmed even if the result of Lyapunov exponent

(a)
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x

(b)

- b

λ

x

Figure 2: Bifurcation diagram and Lyapunov exponent: (a)
changinga1 for a7 = −3.10, a5 = 11.5 anda3 = −12.4 in
case ofn = 7, (b) changingb for a = 10.0 andc = −0.90 in
case of using sinusoidal function (2).

is seen. Therefore chaotic maps possessing several equilib-
rium points can yield various wide interesting behavior.

3. Phase Patterns in Coupled Chaotic Maps

In this section, we consider a coupled chaotic system that
one of these maps as a chaotic subsystem in each cell. It
can be considered easily that coupled chaotic systems have
wide variety of phase patterns. The term “spatio-temporal”
is extensively used for irregular dynamical behavior ob-
served from large scale complex systems of the relevant
to both time and space. In this study, in order to confirm
spatio-temporal chaos or phase patterns in the faithful nat-
ural world, consider a coupled model of the chaotic maps
which are connected to neighbors on a ring array structure
as shown in Fig. 3. Each chaotic cell is connected to neigh-
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Figure 3: Coupled chaotic system as a ring array or coupled
lattice structure.

bors by arbitrary coupling strengthε. The total system by
CML is represented as

xk(t+1) = (1−ε) f
(
xk(t)

)

+
ε

2

(
f
(
xk−1(t)

)
+ f

(
xk+1(t)

))
,

(k = 1,2, · · · ,N)

(4)

where t is an iteration,k is an index number of the cell
which follows the cyclic rule, andN is a size of coupled
cell number, respectively.

Some numerical simulation results of model (4) forN =
50 are shown in Fig. 4 with coupling strengthε = 0.30. The
initial condition for each cell is given asxk(0) ∈ [0.49,0.51]
uniformly. The figure indicates a grade of synchroniza-
tion state for phase difference, with gray scale colors be-
tween white and black which correspond to syn-
chronous and asynchronous state, respectively. Hereby the
synchronous state with gray scale colors in 100 steps is dis-
played. A lot of interesting phenomena were confirmed
though all the results can not be represented more here.

4. Pattern Dynamics and Control

Further, we attempt to control phase patterns of entire
coupled system to become synchronous state with addi-
tional swing of function or changing the coupling strength.
As shown in Fig. 4, it is confirmed that some parts are asyn-
chronous state. Although all subsystem is the same, it is
difficult to perform to control entire system synchronously.
However control method should be simple as possible.
Therefore, we propose two simple methods below.

(method 1)

εk = ε∗ if |xk − xk+1| < 0.5

(method 2)

εk = ε∗ if |xk − xk+1| < 0.5

ϕ =

{ −0.1 if xk ≥ 0
+0.1 if xk < 0

In case of method 1, it is changed only coupling param-
eterεk in each cell. When the value of difference between
two neighbors is larger than 0.5, the coupling strengthεk
of the target cell changes toε∗. In case of method 2, we
use the condition of swing parameterϕ in addition to the
method 1. Figure 5 shows a pattern obtained by method

(a)

(b)

(c)

(d)

Figure 4: Simulation results of phase synchronization state
in coupled chaotic maps as a ring array forN = 50: (a)
n = 5, a5 = 6.20, a3 = −10.0, a1 = 4.10, (b) n = 7,
a7 = −2.85, a5 = 11.6, a3 = −14.6, a1 = 5.80, (c)n = 9,
a9 = 2.08,a7 = −13.15,a5 = 27.4, a3 = −21.3, a1 = 5.46,
and (d)e−0.9|x| sin(10x) + 0.9x. Each result is performed in
the conditionε = 0.30.
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Figure 5: Simulation results of pattern dynamics with con-
trol method 2: (a)n = 7, a7 = −2.85, a5 = 11.6,
a3 = −14.6, a1 = 5.80, (b) transition of synchronous ra-
tio. Each result is performed in the condition of change
parametersε = 0.30↔ ε∗ = 0.50 andϕ = ±0.1.

2 when the control is executed att = 200. A lot of parts
are made synchronous can be confirmed. To clarify a syn-
chronous ratio, the difference of the adjoined cells counted
the number of 0.2 or less and it was calculated. The mean
values of the increase ratio before and after the control
when the initial condition is changed and tries it 1000 times
are shown in Table 1 and 2. The result that either was ex-
cellent was not obtained because two methods were carried
out by a specific parameter, and the control method should
be changed according to the characteristic of the chaotic
map. Therefore, it is necessary to investigate whether other
parameters are changed, and which control method is ex-
cellent though only control by the change in the coupling
strength and the swing parameter were used in this experi-
ment.

5. Conclusions

In this paper, some chaotic maps byn-th power poly-
nomial or sinusoidal functions for using as a chaotic cell
of coupled network have been proposed. Some illustrated
computer simulation results of spatio-temporal chaotic be-
havior and several phase patterns in coupled chaotic maps
have been shown. The simple method for controlling the
patterns has been proposed, and the effectiveness has been
investigated. We conclude that the supposed or similar cou-
pled chaotic systems can be regarded as a good model for
realizing complex phenomena in the universe concerned
with self organization, mechanisms of pattern formation
and so on. However some studies of pattern dynamics and
the mechanism of clustering phenomena in such complex
phenomena and many works have been left.

Table 1: Increase ratio of synchronous state when the set-
ting parameters are the same as figure 4.

ε∗
0.4 0.5 0.6 0.7 0.8

n = 5 11.7 4.4 6.7 9.0 11.7
n = 7 9.1 13.4 14.5 15.0 13.4
n = 9 21.8 23.9 25.3 28.9 25.8
ex sin 6.4 6.0 2.5 -6.1 -12.1 [%]

Table 2: Increase ratio of synchronous state when the set-
ting parameters are the same as figure 4 with swing param-
eterϕ.

ε∗
0.3 0.4 0.5 0.6 0.7 0.8

n = 5 -8.1 -0.7 -0.9 0.8 4.3 2.7
n = 7 17.1 20.8 20.8 34.1 22.8 15.3
n = 9 8.0 16.3 17.3 17.6 18.7 15.6
ex sin -0.1 6.6 6.0 2.4 -6.1 -12.2 [%]
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