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Abstract—In this study, we propose the feedfor-
ward neural network with chaotically oscillating sig-
moid function. By computer simulations, we confirm
that the proposed neural network can find good solu-
tions in early time of the back propagation learning
process.

1. Introduction

Recently, studies on the human brain have been car-
ried out actively on various levels. Many modelings
of the human brain with the visual or the audio sen-
sation are reported [1]-[3] due to development of the
brain researches. However, the investigation of mod-
eling of higher functions in the human brain is just
getting started. We consider that it is very impor-
tant to apply these high functional mechanisms of the
human brain to novel artificial neural networks.

Back Propagation (BP) learning [4] is one of engi-
neering applications of artificial neural networks. The
BP learning operates with a feedforward neural net-
work which is composed of an input layer, a hidden
layer and an output layer, and the effectiveness of the
BP learning has been confirmed in pattern recogni-
tion, system control, signal processing, and so on [5]-
[7]. The BP learning process requires that the input-
output functions are bounded and differentiable func-
tions. One of the most commonly used functions satis-
fying these requirements is the sigmoid function. The
nonlinearity of the sigmoid function has an effect on
modifying connection weights and it is very important
for BP learning.

We consider that neurons in the human brain do not
always output the same output for the same input. In
order to reflect this idea to the feedforward neural net-
works, in this study, we propose the feedforward neural
network with chaotically oscillating gradient of the sig-
moid function. In order to confirm the effectiveness of
the chaotically oscillating sigmoid function, we carry
out computer simulations using other shaking meth-
ods. Further, we compare the proposed network to the
Simulated Annealing (SA) method. By computer sim-
ulations, we confirm that the proposed network with

chaotically oscillating sigmoid function can find good
solutions in early time of the BP learning process.

2. Chaotically Oscillating Sigmoid Function

The BP learning process requires that the input-
output functions are bounded and differentiable func-
tions. One of the most commonly used functions satis-
fying these requirements is the sigmoid function. This
function is an S shaped monotonic increasing function
that has the general form as following equation:

f(x) =
1

1 + e−εx
(1)

where ε is a constant that determines the steepness of
the S shaped curve. Some curves of the function for
different values of ε are illustrated in Fig. 1.
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Figure 1: Sigmoid function.

The nonlinearity of the sigmoid function has an ef-
fect on modifying connection weights and it is very im-
portant for BP learning. We propose the feedforward
neural network with chaotically oscillating gradient (ε)
of the sigmoid function for BP learning.

The authors have investigated the performance of
the Hopfield neural network solving combinatorial op-
timization problems when chaos is inputted to the
neurons as noise [8]-[10]. By computer simulations,
chaotic noise has been confirmed to gain better per-
formance to escape out of local minima than random
noise. Hence, we consider that various features of
chaos are effective for neural networks.
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The logistic map is used to shake ε of the sigmoid
function chaotically:

ε̂(t + 1) = αε̂(t)(1− ε̂(t)). (2)

Varying the parameter α, Eq. (2) behaves chaotically
via a period-doubling cascade. Further, it is well
known that the map produces intermittent bursts just
before periodic-windows appear. We apply the se-
quence generated by the logistic map to the sigmoid
function after the following linear transform to set the
standard as 1.0 and control the amplitude.

ε(t) = 2A(ε̂(t)− 1) + 1 (3)

where A corresponds to the range of ε. One example
of A = 0.5 is shown in Fig. 2.
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Figure 2: Oscillating ε by logistic map.

3. BP Learning Algorithm

The standard BP learning algorithm was introduced
in [4]. The BP is the most common learning algorithm
for feedforward neural networks. In this study, we use
the batch BP learning algorithm. The batch BP learn-
ing algorithm is expressed by a formula similar to the
standard BP learning algorithm. The difference lies in
the timing of the weight. The update of the standard
BP is performed after each single input data, while
for the batch BP the update is performed after all in-
put data has been processed. The total error E of the
network is defined as

E =
P∑

p=1

Ep =
P∑

p=1

{
1
2

N∑

i=1

(tpi − opi)2)

}
, (4)

where P is the number of the input data, N is the
number of the neurons in the output layer, tpi denotes
the value of the desired target data for the pth input
data, and opi denotes the value of the output data
for the pth input data. The goal of the learning is
to set weights between all layers of the network so as
to minimize the total error E. In order to minimize
E, the weights are adjusted according to the following

equation:

wk−1,k
i,j (m + 1) = wk−1,k

i,j (m) +
P∑

p=1

∆pw
k−1,k
i,j (m),

∆pw
k−1,k
i,j (m) = −η

∂Ep

∂wk−1,k
i,j

,

(5)
where wk−1,k

i,j is the weight between the ith neuron of
the layer k − 1 and the jth neuron of the layer k, m
is the learning time, and η is a proportionality factor
known as the learning rate. In this study, we add to
the second line of Eq.(3) an inertia term, leading to

∆pw
k−1,k
i,j (m) = −η

∂Ep

∂wk−1,k
i,j

+ζ∆pw
k−1,k
i,j (m−1), (6)

where ζ denotes the inertia rate.

4. Simulated Results

We consider the feedforward neural network produc-
ing outputs x2 for inputs data x as one learning exam-
ple. The sampling range of the input data is [−1.0, 1.0]
and the step size of the input data is set to be 0.01.
We carried out the BP learning by using the following
parameters. The learning rate and the inertia rate are
fixed as η = 0.2 and ζ = 0.02, respectively. The initial
values of the weights are given between −1.0 and 1.0
at random. The learning time is set to 10000, and the
8 neurons are prepared in the hidden layer. The net-
work structure using this study and learning example
are shown in Fig. 3.
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(a) Network structure. (b) Learning example.

Figure 3: Network structure and learning example.

4.1. Performance of Learning Process

We investigate the learning efficiency as the total
error between the output and the desired target. We
define “Average Error Eave” by the following equation
as mean square error.

Eave =
1
P

P∑

p=1

{
1
2
(tp − op)2

}
(7)

The bifurcation parameter of the logistic map is set
to α = 3.8274 generating intermittency chaos. The
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gradient of the sigmoid function of the conventional
network is fixed as ε = 1.0. Figure 4 shows one ex-
ample of the simulation results when the amplitude of
ε of the sigmoid functions are changed. The horizon-
tal axis is iteration time and the vertical axis is Eave.
This figure shows three learning curve of the proposed
network and the conventional network, respectively,
when the initial conditions of the connection weights
are changed. From this figure, we can confirm that
the proposed network with the chaotically oscillating
sigmoid function gains better performance than the
conventional network when the amplitude of ε is set
to 0.5 (Fig. 4(a)). The learning curve of the proposed
network converges oscillatory. On the other hand, the
proposed network shows similar or weak performance
to the conventional network when the amplitude of ε
are set to 0.2 and 0.8 (Fig. 4(b) and (c)). We consider
that the proposed network gains good performance by
using appropriate amplitude of ε of the chaotically os-
cillating sigmoid function.

4.2. Comparison of Shaking Methods

In this section, in order to confirm the effectiveness
of the chaotically oscillating sigmoid function, we carry
out the computer simulations by other shaking meth-
ods; fully developed chaos and at random. The fully
developed chaos was realized by setting parameter of
the logistic map (Eq. (2)) as α = 4.0000. The simula-
tion result is shown in Fig. 5. In this figure, the results
of the four cases “intermittency chaos,” “fully devel-
oped chaos”, “random” and “conventional network”
are shown.

We can confirm that the learning curve of the ran-
dom method is more oscillatory than the intermittency
chaos and the fully developed chaos. We consider that
the chaotically oscillating ε is important to find good
solution for BP learning.

4.3. Efficient Learning

The proposed network with chaotically oscillating
sigmoid function finds better solutions than the con-
ventional network. However, the learning curve of the
proposed network is oscillatory and do not converge.
We consider that the proposed network can converge
effectively, if oscillating ε stops on BP learning.

Figure 6 shows the simulated result when the
stopped iteration time is set to 3000, 4000 and 5000.
After oscillating stop, the gradient is fixed as ε = 1.0.
From this figure, we can see that the proposed net-
work converges to good solution by oscillating stop.
We consider that it is important to oscillate the gra-
dient of the sigmoid function in early time of learning
process to find good solution.

 0.00001

 0.0001

 0.001

 0.01

 0.1

 1

 0  2000  4000  6000  8000  10000
time

Eave

Conventional network (1)
Conventional network (2)

Conventional network (3)

Proposed network (1)

Proposed network (2)

Proposed network (3)

(a) A=0.5.
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(b) A=0.2.
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Figure 4: Learning curve for difference range of ε.
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Figure 5: Learning curve for difference shaking meth-
ods.
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Figure 6: Learning curve for oscillating stop.

4.4. SA Method

Simulated annealing (SA) is a generic probabilis-
tic meta-algorithm for global optimization problems,
namely locating a good approximation to the global
optimum of a given function in a large search space.
SA can find a good solution by decreasing the gradient
of the sigmoid function gradually. In this section, we
investigate the performance of the SA method and the
proposed network with the concept of SA. For com-
parison, the learning ability of the proposed network
and the conventional network are investigated. The
changing ε in these networks are shown in Fig. 7. The
horizontal axis is time and the vertical axis is ε.
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(a) SA method. (b) Proposed network with SA.
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Figure 7: Changing ε of the sigmoid function.

The simulated result is shown in Fig. 8. From this
figure, the SA method and the proposed network with
SA do not escape from local minima as well as the
conventional network. We consider that the network
needs some irregular change of neurons themselves in
early learning time to find a good solution.
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Figure 8: Learning curve of SA method.

5. Conclusions

In this study, we proposed the feedforward neu-
ral network with chaotically oscillating gradient of
the sigmoid function. By computer simulations, we
confirmed that the feedforward neural network with
chaotically oscillating sigmoid function can find good
solutions in early time of the BP learning process.
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