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Abstract—In our previous research, we confirmed that
the chaotic switching noise generated by the cubic map
gained a good performance for solving combinatorial opti-
mization problems when the noise was injected to the Hop-
field neural network. However, the reason of the good ef-
fect of chaotic switching noise has not been clarified com-
pletely. In this study, we investigate the solving ability of
Hopfield neural network for QAP when the chaotic behav-
ior of the switching noise is changed.

1. Introduction

Combinatorial optimization problems can be solved with
the Hopfield neural network (abbr. NN). If we choose con-
nection weights between neurons appropriately according
to given problems, we can obtain a good solution by the
energy minimization principle. However, the solutions are
often trapped into a local minimum and do not reach the
global minimum. In order to avoid this critical problem,
several people proposed the method adding some kinds of
noise for solving traveling salesman problems (TSP) with
the Hopfield NN [1]. Hayakawa and Sawada pointed out
the chaos near the three-periodic window of the logistic
map gains the best performance [2]. They concluded that
the good result might be obtained by a property of the
chaos noise; short time correlations of the time-sequence.
Hasegawa et al. investigated solving abilities of the Hop-
field NN with various surrogate noise, and they concluded
that the effects of the chaotic sequence for solving opti-
mization problems can be replaced by stochastic noise with
similar autocorrelation [3]. We have also studied the reason
of the good performance of the Hopfield NN with chaotic
noise. We imitated the intermittency chaos by the burst
noise generated by the Gilbert [4] model with 2 states; a
laminar state and a burst state. We concluded that the irreg-
ular switching of laminar part and burst part is one of the
reasons of the good performance of the chaotic noise [5]
[6]. Further, we have investigated a performance of chaotic
switching noise generated by the cubic map when the noise
is injected to the Hopfield NN for quadratic assignment
problem (abbr. QAP). We have confirmed that the chaotic
switching noise was effective for solving QAP similar to
the intermittency chaos noise near the three-periodic win-

dow [9]. However, the reason of the good effect of chaotic
switching noise has not been clarified completely.

In this study, we investigate solving ability of Hopfield
NN for QAP when the chaotic behavior of the switching
noise is changed. By computer simulation, we confirm that
the network can find good solutions, even when the chaotic
behavior is partly replaced by random time series.

2. Solving QAP with Hopfield NN

Various methods are proposed for solving the QAP
which is one of the NP-hard combinatorial optimization
problems.The QAP is expressed as follow: given two ma-
trices, distance matrix C and flow matrix D, and find the
permutation P which corresponds to the minimum value of
the objective function f (p) in Eq. (1).

f(P ) =
N∑

i=1

N∑
j=1

CijDp(i)p(j), (1)

where Cij and Dij are the (i, j)-th elements of C and D,
respectively, p(i) is the i th element of vector P, and N is
the size of the problem. There are many real applications
which are formulated by Eq. (1). One example of QAP is
find an arrangement of the factories to make a cost the min-
imum. The cost is given by the distance between the facto-
ries and flow of the products between the factories. Other
examples are the placement of logical modules in a IC chip,
the distribution of medical services in large hospital.

Because the QAP is very difficult, it is almost impossi-
ble to solve the optimum solutions in large problems. The
largest problem which is solved by deterministic methods
may be only 24 in recent study. Further, computation times
is very long to obtain the exact optimum solution. There-
fore, it is usual to develop heuristic methods which search
near optimal solutions in reasonable time.

For solving N -element QAP by Hopfield NN, N×N

neurons are required and the following energy function is
defined to fire (i, j)-th neuron at the optimal position:

E =

N∑
i,m=1

N∑
j,n=1

wim;jnximxjn +

N∑
i,m=1

θimxim. (2)
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The neurons are coupled each other with the following
weight between (i, m)-th neuron and (j, n)-th neuron and
the threshold of the (i, m)-th neuron is described by:

wim;jn = −2

{
A(1−δmn)δij+Bδmn(1−δij)+

CijDmn

q

}
(3)

θim = A + B (4)

where A and B are positive constant, and δij is Kroneker’s
delta. The state of N×N neurons are asynchronously up-
date due to following difference equation:

xim(t+1) = f

(
N∑

j,n=1

wim;jnxim(t)xjn(t)−θim+βzim(t)

)

(5)
where f is sigmoidal function defined as follows:

f(x) =
1

1 + exp
(
− x

ε

) , (6)

zim is additional noise, and β limits the amplitude of the
noise.

3. Chaotic Switching Noise

In this section, we describe chaotic switching noise in-
jected to the Hopfield NN.

The following cubic map is used to generate the chaotic
switching noise.

ŷim(t + 1) = −ŷim(t)(αcŷ
2
im(t) + 1− αc). (7)

Figure 1 shows the shape of the cubic map Eq. (7). The
one-parameter bifurcation diagram of this map is shown in
Fig. 2. The attractor becomes symmetric at around αc =
3.600 via an interior crisis. Because the transition of the
solution from the positive/negative part to the other part
is seldom just after the crisis, the behavior looks like an
irregular switching as shown in Fig. 3. We use these time
series after the following normalization.

yim(t + 1) =
ŷim(t)− ȳ

σy

(8)

where ȳ and σy are the average and the standard deviation
of ŷ(t), respectively.

In our previous research [9], we have confirmed that this
chaotic switching noise was effective for solving QAP.

4. Changing Chaotic Behavior of Switching Noise

We consider that the chaotic switching noise (Figs. 3)
contains two kinds of chaotic features; one is the switching
timing of the upper part and the lower part, the other is the
behavior inside the each part.

In the previous research [9], we have confirmed that reg-
ular switching between the two parts makes the perfor-
mance worse. Hence, the former chaotic feature can be
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Figure 1: Cubic map (αc = 3.600).

Figure 2: Bifurcation diagram of cubic map.
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(a) αc = 3.599.
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(b) αc = 3.600.

Figure 3: Time series obtained from cubic map.
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said to be important for solving QAP. How about the latter
chaotic feature? In order to answer this question, we re-
place the chaotic time series inside the each interval of the
chaotic switching noise by other time series.

Figure 4 shows three kinds of time series made by re-
placing the original chaotic time series by chaos, random,
and torus. The switch was to multiply the sequance number
either by 1 or by −1. Please note that we keep the switch-
ing timing between the upper part and the lower part.
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(a) Switching chaos.
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(b) Switching random.
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(c) Switching torus.

Figure 4: Changing chaotic behavior of switching noise.

4.1. Switching Chaos

The logistic map is used to generate the chaotic time se-
ries inside the each interval.

l̂im(t + 1) = αl l̂im(t)(1 − l̂im(t)). (9)

Varying parameter αl, Eq. (9) behaves chaotically via a
periodic-doubling cascade. In this study, we carry out com-
puter simulations using the fully-developed chaos, which is
obtained from Eq. (9) for αl = 4.0.

4.2. Switching Random

Random time series are generated by using random func-
tion of C compiler. The range of random noise is set to 0 ∼
1.

4.3. Switching Torus

The sine circle map is used to generate the torus time
series inside the each interval.

x̂im(t + 1) = x̂im(t) + αx sin {6πx̂im(t)}+ D. (10)

The parameters are fixed as αx=0.04 and D=0.1.

5. Simulation Results

In this section, the simulation results of Hopfield NN
with three kinds of switching noise for 12-elements QAP
are summarized in Tables 1 and 2. The problem used here
was chosen from QAPLIB, whose name is “Nug12.” The
global minimum of this target problem is known as 578.
The parameters of Hopfield NN are fixed as A = 0.9, B =
0.9, q = 140, ε = 0.02 and β= 0.55.

The tables show the average of the obtained solutions
in 10 trials with different initial conditions, the minimum
solution in 10 trials, and the error between the average and
the optimal solution calculated by the following equation.

Error =
Ave− Opt

Opt
× 100, (11)

where Opt denotes the optimal solution of the target prob-
lem.

From these tables, we can confirm that the switching
chaos and the switching random can gain similar perfor-
mance to the cubic map (chaotic switching noise). This
means that the chaotic feature inside the each interval is
not very important for solving QAP.

However, we can also notice that the switching torus can
not find a good solution. We can conclude that some kinds
of irregularity are important inside the each interval of the
switching noise.
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Table 1: Solving abilities for 12-elements QAP. (αc=3.599)
Iteration switching chaos switching random switching torus Cubic Map

Ave Min error Ave Min error Ave Min error Ave Min error
1000 624.8 586 8.097 645.4 626 11.661 657.6 632 13.772 635.2 616 9.896
2000 620.2 586 7.301 631.2 606 9.204 654.8 632 13.287 627.0 616 8.478
3000 619.0 586 7.903 627.6 606 8.581 646.4 606 11.834 627.0 616 8.478
4000 617.8 586 6.886 623.4 594 7.855 646.4 606 11.834 626.0 616 8.304
5000 615.8 586 6.540 619.8 594 7.232 646.4 606 11.834 621.2 608 7.470
6000 615.8 586 6.540 617.2 594 6.782 646.4 606 11.834 619.6 608 7.197
7000 614.0 586 6.228 616.8 594 6.713 646.4 606 11.834 616.8 606 6.713
8000 613.4 586 6.125 614.6 594 6.332 646.4 606 11.834 616.6 606 6.678
9000 611.4 586 5.779 614.0 594 6.228 646.4 606 11.834 616.6 606 6.678

10000 611.4 586 5.779 612.6 594 5.986 646.4 606 11.834 615.6 606 6.505

Table 2: Solving abilities for 12-elements QAP. (αc=3.6)
Iteration switching chaos swithing random swithing torus Cubic Map

Ave Min error Ave Min error Ave Min error Ave Min error
1000 635.8 612 10.000 637.0 606 10.207 662.4 664 14.602 632.4 582 9.412
2000 633.6 612 9.619 627.4 606 8.547 656.6 622 13.599 625.4 582 8.201
3000 623.8 598 7.924 624.8 606 8.097 654.8 622 13.287 623.0 582 7.785
4000 621.4 598 7.509 617.8 606 6.886 654.8 622 13.287 615.8 582 6.540
5000 619.2 598 7.128 613.6 586 6.159 654.8 622 13.287 615.6 582 6.505
6000 614.6 598 6.332 613.6 586 6.159 654.4 622 13.218 614.6 582 6.332
7000 610.6 598 5.640 613.4 586 6.125 654.4 622 13.218 614.0 582 6.228
8000 609.4 598 5.433 613.4 586 6.125 654.4 622 13.218 608.8 582 5.329
9000 609.4 598 5.433 611.8 586 5.848 654.4 622 13.218 608.8 582 5.329

10000 608.4 598 5.259 611.8 586 5.848 654.4 622 13.218 606.6 582 4.948

6. Conclusions

In this study, we have investigated the solving ability of
Hopfield NN when the chaotic behavior of the switching
noise was replaced by another chaos, random and torus.
By computer simulation, we confirmed that the network
can find good solution, even when the chaotic behavior
was partly replaced by random time series. We conclude
that the reason of the good performance of the chaotic
switching noise generated from the cubic map is the chaotic
switching between the upper part and the lower part, and
that chaotic behavior inside the each interval is not impor-
tant but some kinds of irregularity are necessary.
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