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Abstract— In recent years, many people have been trying
to develop some applications to information processing by ex-
ploiting oscillatory phenomena in neural networks. Bifurcation
and stability of equilibrium points in a simple neural oscillator
consisting of two neurons have been analyzed in detail. On
the other hand, oscillatory phenomena in the simple neural
oscillator can be modeled by electrical circuit such as van der
Pol oscillators. In this study, we propose a network model of
simple oscillators coupled by time-varying resistor, which can
explain some interesting complex phenomena observed in a
large scale network of neurons coupled by both excitability
and inhibitory synapses. By carrying out computer simulations
and circuit experiments, we confirm the generation of various
interesting phenomena which cannot be observed in simple
coupled oscillatory networks.

I. INTRODUCTION

In recent years, many people have been trying to develop
some applications to information processing by exploiting
oscillatory phenomena in neural networks. Such neural net-
works can produce some kinds of phase patterns, and they
may be utilized for associative memory or image process-
ing [1]-[4]. Bifurcation and stability of equilibrium points
in a simple neural oscillator consisting of two neurons have
been analyzed in detail. Further, two neural oscillators cou-
pled by a simple connection have been reported to produce
phase synchronization.

On the other hand, oscillatory phenomena in simple neural
oscillators can be modeled by electrical circuits such as van
der Pol oscillator and BVP oscillator. Studies on synchro-
nization phenomena of coupled oscillators are extensively
carried out in various fields, physics [5]-[8], biology [9][10],
electrical engineering [11]-[20], and so on. Endo et al. have
reported details of theoretical analysis and circuit experi-
ments about some coupled oscillators as a ladder, a ring
and a two-dimensional array [13]-[15]. Yamauchi et al. have
discovered very interesting wave propagation phenomena of
phase states between two adjacent oscillators in an array
of van der Pol oscillators coupled by inductors [18][19].
Because many researchers suggest that synchronization phe-
nomena of coupled oscillators have some relations to infor-
mation processing in the brain, we consider that it is very
important to investigate the synchronization phenomena of
coupled oscillators to realize a brain-like computer in future
application.

In this study, we propose a network model of simple os-
cillators coupled by time-varying resistor, which can explain
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some interesting complex phenomena observed in a large
scale network of neurons coupled by both excitability and
inhibitory synapses. We realize the time-varying resistor by
switching a positive and a negative resistors periodically.
We consider that the positive and the negative effects of
the coupling resistor can correspond to the excitability and
the inhibitory synapses qualitatively. First, we analyze phase
synchronization observed in two van der Pol oscillators
coupled by the time-varying resistor as a basic oscillators.
Next, we investigate phase synchronization observed in a
one-dimensional array of coupled van der Pol oscillators. By
carrying out computer simulations and circuit experiments,
we confirm the generation of various interesting phenomena
which cannot be observed in simple oscillatory networks
coupled by resistors. We consider that switching between the
excitability and the inhibitory produce the complexity in the
network. Furthermore, we carry out computer simulations as
changing the timing of the switchings and confirm that the
behavior of the whole network becomes more complex.

II. COUPLED OSCILLATORS MODEL

Figure 1 shows the circuit model. In this circuit, two
identical van der Pol oscillators are coupled by a Time-
Varying Resistor (TVR). We have known the synchronization
phenomena for the case that the coupling resistor is a
simple time-invariant resistor [11][12]. Namely, the in-phase
synchronization is stable for a positive coupling resistor,
while the anti-phase synchronization is stable for a negative
coupling resistor. In this study, we consider the case that
the coupling resistance R(t) of the TVR varies with time.
We consider that the positive and the negative effects of the
coupling resistor can correspond to the excitability and the
inhibitory synapses qualitatively. The characteristics of the
TVR are shown in Fig. 2. In this study, we consider the case
that the duty ratio is fixed as p = 0.5.

Firstly, the vk−iRk characteristics of the nonlinear resistor
are defined as follows,

iRk = −g1vk + g3vk
3. (1)

By changing the variables and the parameters,
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(a) Circuit model (TVR is a Time-Varying Resistor).

(b) Network topology.

Fig. 1. Coupled oscillators model.
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Fig. 2. Characteristics of the TVR.

the normalized circuit equations are given as


dxk

dτ
= ε(1 − xk

2) − yk

dyk

dτ
= xk − γ(τ)

2∑
j=1

yj

(k = 1, 2) (2)

where the sign of the coupling term changes according to
the value of the time-varying resistor.

III. SYNCHRONIZATION PHENOMENA

We observed that the two coupled oscillators are synchro-
nized at in-phase or at anti-phase as shown in Figs. 3 and 4.
These two synchronization states can be obtained by giving
different initial conditions. The parameters of the oscillators
model are fixed as ε = 2.6, ω = 1.37 and γ = ±0.1.
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Fig. 3. In-phase synchronization (computer simulation results). (a) 1st
circuit attractor (x1 vs y1). (b) 2nd circuit attractor (x2 vs y2). (c) Phase
difference (x1 vs x2). (d) Time wave form (τ vs x1 and x2).
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Fig. 4. Anti-phase synchronization (computer simulation results). (a) 1st
circuit attractor (x1 vs y1). (b) 2nd circuit attractor (x2 vs y2). (c) Phase
difference (x1 vs x2). (d) Time wave form (τ vs x1 and x2).

We also confirm that the two coupled oscillators are syn-
chronized at in-phase or at anti-phase in circuit experiments
as shown in Figs. 5 and 6. In the circuit experiments, the TVR
is realized by using an analog switch shown in Fig. 7 [21].

IV. LARGE SCALE OSCILLATORS

A. Array of Oscillators

In this section, we consider a ring of oscillators as shown
in Fig. 8. In this circuit adjacent two oscillators are coupled
by one TVR. We introduce small resistors rm in computer
simulations to avoid L-loop. By adding the following param-
eter

η = rm

√
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L
,
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Fig. 5. In-phase synchronization (circuit experimental results). (a) 1st
circuit attractor (v1 vs Ib1+Ia2). (b) 2nd circuit attractor (v2 vs Ia1+Ib2).
(c) Phase difference (v1 vs v2). (d) Time wave form (τ vs v1 and v2).
L = 10mH, C = 33nF, r = 152Ω.
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Fig. 6. Anti-phase synchronization (circuit experimental results). (a) 1st
circuit attractor (v1 vs Ib1+Ia2). (b) 2nd circuit attractor (v2 vs Ia1+Ib2).
(c) Phase difference (v1 vs v2). (d) Time wave form (τ vs v1 and v2).
L = 10mH, C = 33nF, r = 152Ω.

the normalized circuit equations of the array of oscillators
are given as




dxk

dτ
= ε(1 − xk

2) − (yak + ybk)

dyak

dτ
=

1
2
xk − ηyak − γ(τ)(yak) + yb(k+1))

dybk

dτ
=

1
2
xk − ηybk − γ(τ)(ya(k−1) + ybk))

(k = 1, 2, · · · , N)

(3)

where
ya0 = yaN , yb(N+1) = yb1. (4)

+
-

TVR
+
-

Fig. 7. Circuit realization of the TVR [21].

We can confirm the synchronization phenomena which
have not been observed in oscillators coupled by time-
invariant resistor.

B. Even Number Coupling: N = 14

Figure 9 shows the computer simulated result for the case
of N = 14. N denotes the number of coupled oscillators.
We can see that the array of oscillators coupled by TVR are
synchronized at in-phase or at anti-phase.
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(a) In-phase synchronization.
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(b) Anti-phase synchronization.

Fig. 9. Computer simulated result for N = 14. ε = 2.6, ω = 1.37, γ =
(0.4 or −0.12), η = 0.01. Upper figures: xk vs yak + ybk . Middle
figures: xk vs x(k+1). Lower figures: τ vs xk. k = 1, 2, 3, . . . , 14.
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Fig. 8. Ring of circuits model.

C. Odd Number Coupling: N = 15

Figure 10 shows the computer simulated result for the case
of N = 15. We can see that the array of oscillators coupled
by TVR are synchronized with in-phase (Fig. 10(a)). How-
ever, the adjacent oscillators are almost synchronized with
anti-phase as shown in Fig. 10(b). Because, the boundary
condition is the ring structure, the phase difference between
the adjacent oscillators in not around π. Namely, in this case
15-phase synchronization are observed.

D. Wave Propagation Phenomena

In this section, wave propagation phenomena observed
from the 15-array of oscillators coupled by TVR are inves-
tigated. Figure 11 shows one example of wave propagation
phenomena. In this figure, the vertical axis is the sum of
the voltages of adjacent oscillators and the horizontal axis
is time. White regions in the diagram correspond to the
states that the sum of the voltages is close to zero, namely
the adjacent two oscillators are synchronized at anti-phase.
While, black regions correspond to the state the sum of the
voltages has large amplitude. We can see that the adjacent
two oscillators are synchronized at in-phase in the brack
regions from Fig. 11.

V. COMPLEX PHENOMENA

We carry out computer simulations as changing the timing
of the switchings. Some examples of complex phenomena
are shown in Fig. 12. From these figures, various kinds of
complex synchronization are confirmed. We consider that
switching between the excitability and the inhibitory produce
the complex phenomena such as pattern formations.

VI. CONCLUSIONS

In this study, we proposed a network model of simple os-
cillators coupled by time-varying resistor, which can explain
some interesting complex phenomena observed in a large
scale network of neurons coupled by both excitability and
inhibitory synapses. By carrying out computer simulations
and circuit experiments, we confirmed the generation of
various interesting phenomena which cannot be observed in
simple oscillatory networks coupled by resistors. We consider
that switching between the excitability and the inhibitory
produce the complexity in the network.
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Fig. 11. Wave propagation phenomena. ε = 2.6, ω = 1.37, γ = (0.4 or −0.12), η = 0.01.
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(a) ε = 2.6, ω = 0.87, γ = (0.2 or −0.2), η = 0.01.
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(b) ε = 2.6, ω = 1.00, γ = (0.2 or −0.2), η = 0.01.
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(c) ε = 2.6, ω = 2.52, γ = (0.2 or −0.2), η = 0.01.

Fig. 12. Complex phenomena.
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