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Abstract— Solving combinatorial optimization problems is one
of the important applications of the neural network. Many
researchers have reported that exploiting chaos achieves good
solving ability. However, the reason of the good effect of chaos has
not been clarified yet. In this study, we investigate a performance
of chaotic switching noise injected to the Hopfield neural network
for quadratic assignment problems. By computer simulation we
confirm that the chaotic switching noise is effective for solving
quadratic assignment problems as well as intermittent chaos near
three-periodic window.

I. INTRODUCTION

Combinatorial optimization problems can be solved with the
Hopfield neural networks (abbr. NN). If we choose connection
weights between neurons appropriately according to given
problems, we can obtain a good solution by the energy min-
imization principle. However, the solutions are often trapped
into a local minimum and do not reach the global minimum.
In order to avoid this critical problem, several people proposed
the method adding some kinds of noise for solving traveling
salesman problems (TSP) with the Hopfield NN [1]. Hayakawa
and Sawada pointed out the chaos near the three-periodic
window of the logistic map gains the best performance [2].
They concluded that the good result might be obtained by
a property of the chaos noise; short time correlations of the
time-sequence. Hasegawa et al. investigated solving abilities
of the Hopfield NN with various surrogate noise, and they
concluded that the effects of the chaotic sequence for solving
optimization problems can be replaced by stochastic noise with
similar autocorrelation [3]. We have also studied the reason
of the good performance of the Hopfield NN with chaotic
noise. We imitated the intermittency chaos noise by the burst
noise generated by the Gilbert model [4] with 2 states; a
laminar state and a burst state. We concluded that the irregular
switching of laminar part and burst part is one of the reasons
of the good performance of the chaotic noise [5][6].

Further, we have investigated the performance of chaos
noises when the control parameter of the logistic map is
changed, and the intermittency chaos near the three-periodic
window of the logistic map is not only special chaos noise
gaining a good performance as shown in Fig. 1 [7]. For
example, the chaos noise achieves a good performance around
α = 3.67. At this point, the attractor of the logistic map

bifurcates from two-band chaos to one-band chaos via an
interior crisis. In the two-band chaos, the solution moves be-
tween the upper band and the lower band alternately. Namely,
the solution has a kind of regularity even if it is chaotic
in each band. However, the crisis makes the two bands to
merge into one band and the switching between the upper
band and the lower band becomes irregular. We consider that
the edge behavior between regular and irregular gains a good
performance.
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(a) Performance of chaos noises for QAP.
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(b) Bifurcation diagram of logistic map.

Fig. 1. Performance of chaos noises when the control parameter is changed.

In this study, we investigate a performance of chaotic
switching noise, which is generated by a cubic map, injected
to the Hopfield NN for quadratic assignment problems (abbr.
QAP). By computer simulation we confirm that the chaotic
switching noise is effective for solving QAP as well as the
intermittent chaos noise near the three-periodic window.
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II. SOLVING QAP WITH HOPFIELD NN

Various methods are proposed for solving the QAP which
is one of the NP-hard combinatorial optimization problems.
The QAP is expressed as follow: given two matrices, distance
matrix C and flow matrix D, and find the permutation p which
corresponds to the minimum value of the objective function
f (p) in Eq. (1).

f(p) =
N∑

i=1

N∑
j=1

CijDp(i)p(j), (1)

where Cij and Dij are the (i, j)-th elements of C and D,
respectively, p(i) is the i th element of vector p, and N is the
size of the problem. There are many real applications which
are formulated by Eq. (1). One example of QAP is to find an
arrangement of the factories to make a cost the minimum. The
cost is given by the distance between the factories and flow
of the products between the factories. Other examples are the
placement of logical modules in a IC chip, the distribution of
medical services in large hospital, and so on.

Because the QAP is very difficult, it is almost impossible
to solve the optimum solutions in large problems. The largest
problem which is solved by deterministic methods may be
only N = 36 in recent study [8]. Further, computation time
is very long to obtain the exact optimum solution. Therefore,
it is usual to develop heuristic methods which search nearly
optimal solutions in reasonable time.

For solving N -element QAP by the Hopfield NN, N×N
neurons are required and the following energy function is
defined to fire (i, j)-th neuron at the optimal position:

E =
N∑

i,m=1

N∑
j,n=1

wim;jnximxjn +
N∑

i,m=1

θimxim, (2)

The neurons are coupled each other with weight between
(i,m)-th neuron and (j, n)-th neuron and the threshold of the
(i,m)-th neuron are described by:

wim;jn = −2
{

A(1 − δmn)δij

+ βδmn(1 − δij) +
CijDmn

q

}
(3)

θim = A + B (4)

where A and B are positive constants, and δij is Kroneker’s
delta. The state of N×N neurons are asynchronously update
due to the following difference equation:

xim(t + 1) = f

(
N∑

j,n=1

wim;jnxim(t)xjn(t)

− θim + βuim(t)

)
(5)

where f is sigmoidal function defined as follows:

f(x) =
1

1 + exp
(− x

ε

) (6)

uim is additional noise, and β limits amplitude of the noise.

III. NOISE GENERATION

A. Chaotic Switching Noise

In this section, we describe chaotic switching noise injected
to the Hopfield NN.

The following cubic map is used to generate the chaotic
switching noise.

ŷim(t + 1) = −ŷim(t)(αcŷ
2
im(t) + 1 − αc) (7)

Figure 2 shows the shape of the cubic map. The one-parameter
bifurcation diagram of this map is shown in Fig. 3. The
attractor becomes symmetric at around αc = 3.600 via an
interior crisis. Because the transition of the solution from the
positive/negative part to the other part is seldom just after
the crisis, the behavior looks like an irregular switching as
Fig. 4(a). As the parameter increases, the transition becomes
more frequent as Figs. 4(b) and (c). For αc = 4.000, the time
series become similar to a uniform random noise as Fig. 4(d).

We use the time series in Figs. 4(a), (b) and (c) as chaotic
switching noises after the following normalization.

yim(t) =
ŷim(t) − ȳ

σy
(8)

where ȳ and σy are the average and the standard deviation of
ŷ(t), respectively.
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Fig. 2. Cubic map (αc = 3.600).

B. Intermittency Chaos Noise

We have confirmed that the intermittency chaos near the
three periodic window has the good performance to the Hop-
field NN for combinatorial optimization problems. In order to
evaluate the performance of the chaotic switching noise in the
last subsection, we carry out the same simulation when the
intermittency chaos is injected to the Hopfield NN as a noise.

The logistic map is used to generate the intermittency chaos
noise.

ẑim(t + 1) = αlẑim(t)(1 − ẑim(t)). (9)

5520



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Y
im

(t
)

alpha

Fig. 3. Bifurcation of cubic map.

Varying parameter αl, Eq. (9) behaves chaotically via a
periodic-doubling cascade. Further, it is well known that the
map produces intermittent bursts just before periodic-windows
appear. Figure 5(a) shows an example of the intermittency
chaos near the three-periodic window obtained from Eq. (9)
for αl = 3.82676. As we can see from the figure, the chaotic
time series could be divided into two phases; laminar parts of
periodic behavior with period three and burst parts of spread
points over the invariant interval. As increasing αl, the ratio of
the laminar parts becomes larger and finally the three-periodic
window appears. Just for the comparison, we also carry out
computer simulations for the case of fully developed chaos in
Fig. 5(b) which is obtained from Eq. (9) for αl = 4.0000.
This time series is similar to a uniform random noise as well
as the cubic map for αc = 4.0.

When we inject the intermittency chaos noise to the Hop-
field NN, we normalize ẑim by Eq. (10).

zim(t) =
ẑim(t) − z̄

σz
(10)

where z̄ and σz are the average and the standard deviation of
ẑ(t), respectively.

C. Regular Switching Noise

For comparison, we compose a regular switching noise.
We use the time series of the cubic map (7) just before the

interior crisis (αc = 3.598). Because the generated time series
do not transit to the negative part before the crisis, we change
the sign of the sequence in every L iterations. An example of
the regular switching noise is shown in Fig. 6.

This noise is also normalized in a similar way before the
injection.

IV. SIMULATED RESULTS

In this section, the simulated results of the Hopfield NN with
the chaotic switching noise, the intermittency chaos noise and
the regular switching noise for 12-element QAP are shown.
The problem used here was chosen from the site QAPLIB [8]
named “Nug12.” The global minimum of this target problem
is known as 578. The parameters of the Hopfield NN are as
A = 0.9, B = 0.9, q = 140, ε = 0.02 and the amplitude of
the injected noise is fixed as β = 0.55.

Table 1 shows simulation results. We carried out each simu-
lation 10 times with different initial conditions and calculated
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(a) αc = 3.599.
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(b) αc = 3.600.
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(c) αc = 3.604.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

yim(t+1)

t

(d) αc = 4.000.

Fig. 4. Time series obtained from cubic map.
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TABLE I

SOLVING ABILITIES FOR 12-ELEMENT QAP.

Iteration Cubic map Logistic map Regular switching
Chaotic switching full Intermittency chaos full

αc=3.599 αc=3.600 αc=3.604 αc=4.000 αl=3.82676 αl=4.00000 L=50 L=100 L=200 L=500
1000 635.2 632.4 630.0 642.6 623.4 630.2 651.8 654.4 684.2 691.8
2000 627.0 625.4 626.8 642.6 613.4 622.8 634.6 641.6 662.8 669.0
3000 627.0 623.0 625.0 642.6 613.4 622.8 634.2 637.4 651.6 663.8
4000 626.0 615.8 625.0 642.6 607.8 622.8 629.6 631.2 645.8 658.6
5000 621.2 615.6 625.0 642.6 607.8 622.8 624.6 629.6 633.8 652.4
6000 619.6 614.6 624.8 642.6 607.8 622.8 624.6 626.4 633.8 646.0
7000 616.8 614.0 622.6 642.6 607.0 622.8 622.8 625.8 631.4 641.4
8000 616.6 608.8 621.0 642.6 604.0 622.8 622.8 625.8 630.6 640.0
9000 616.6 608.8 621.0 642.6 604.0 622.8 622.8 625.0 630.6 640.0

10000 615.6 606.6 621.0 642.6 604.0 622.8 621.6 624.6 625.6 622.0
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000
t

zim(t+1)

(b). αl = 4.00000.

Fig. 5. Time series obtained from logistic map.
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Fig. 6. Regular switching noise (L = 50).

the average value. The results show that the chaotic switching
noise for αc = 3.600 gains a good performance similar to
the intermittency chaos noise for αl = 3.82676. We can also
see that the regular switching noise and fully-developed chaos
cannot achieve a good performance.

V. CONCLUSIONS

In this study, we have investigated a performance of chaotic
switching noise injected to the Hopfield NN for QAP. By
computer simulation we confirmed that the chaotic switching
noise is effective for solving QAP similar to the intermittency
chaos near the three-periodic window.

A positive part and a negative part repeat alternately in the
chaotic switching noise. Hence, this noise can be said to be less
chaotic than fully-developed chaos. By combining the result in
this study with our past study explaining the good performance
of the intermittency chaos, we conclude that the edge behavior
between regular and irregular can play an important role in
information processing.
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