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Abstract— There are many kinds of optimization techniques
for designing high-performance RF circuits. In this paper, we
propose a new frequency-domain Spice-oriented optimization
algorithm using the steepest descent method. We have developed
a simulator executing the frequency-domain analysis based on
the harmonic balance (HB) method, where all the nonlinear
devices such bipolar transistors and MOSFETs are replaced
by the equivalent HB modules. The objective functions in the
optimization are estimated by the DC analysis of the modified
HB circuits.

On the other hand, our steepest descent algorithm is realized
by equivalent circuit model. Thus, the optimum solution is stably
found by the transient analysis of Spice. We show the formulation
of HB circuits in section II, the Spice-oriented optimization
algorithm in section III and the interesting examples in section
IV.

I. INTRODUCTION

There have been proposed many kinds of optimization
algorithms for designing analog integrated circuits [1-5]. Es-
pecially, the frequency-domain optimization method is very
important for designing the high performance RF circuits and
the communication systems. Our algorithm is combined with
frequency-domain harmonic balance (HB) method for solving
nonlinear circuit and the optimization technique based on the
steepest descent method.

The Volterra series methods [6-8] are widely used for the
analysis of nonlinear circuits in the frequency domain, which
can be also easily applied to design the circuits [3,5-6],
because they can get the solutions in the analytical forms.
Although the algorithms are based on the elegant bilinear
theory, it is not so easy to derive the higher order Volterra ker-
nels. Furthermore, the applications are difficult for large scale
systems containing many nonlinear elements [6-7]. Remark
that the methods can be only applied to the weakly nonlinear
circuits such that the nonlinear devices are modeled by power
series. The convergences to the strong nonlinearities are not
guaranteed.

The HB method is also widely used for solving nonlinear
circuits [10-13] in the frequency domain. It has such a property
that it can be stably applied even to the strong nonlinear
circuits having bipolar transistors and/or MOSFETs. On the
other hand, they need many troublesome tasks for getting the
circuit equations and the applications of HB method.

Therefore, we have developed a Spice-oriented algorithm
based on the HB method using Analog Behavior Models
(ABMs), where all the nonlinear devices are replaced by
corresponding HB models, and linear inductors and capacitors
are transformed into the corresponding HB elements coupled
with the controlled sources [11]. Once these device modules
such as bipolar transistors and MOSFETs are stored in our
computer library, a given circuit is easily transformed into
the HB circuit. Thus, the frequency-domain analysis such as
frequency response curves can be easily obtained by solving
the circuit with DC analysis of Spice. We show our HB method
and the device modules of nonlinear devices in section II.
These solutions from HB circuit are used in the following
frequency-domain optimization techniques.

Now, let us discuss our optimization algorithm in the
frequency-domain. First, we define the objective function as
follow,

Φ(x, y), x ∈ Rn, y ∈ Rm, (1)

where
x:circuit variables such as voltages and currents,
y:parameters (ex., L, R, C, voltage and current sources).

We want to minimize or maximize the function (1) by
adjusting y, where x are obtained from the HB circuit
1 . Although there are many optimization techniques [1-
5], we use a well-known steepest descent algorithm using
Spice. Although the descent direction is generally decided
by the sensitivity analysis [2], we find it with the numerical
differentiation techniques because our modified HB circuit
has very complicated structures. Then, our Spice-oriented
optimization algorithm is realized by the equivalent circuit,
and the optimum point can be found by the equilibrium point
in the transient analysis. From our many simulation results, we
could find out the optimum point stably when it has unique
point.

We show our optimization algorithm and the equivalent
circuit model in section III, and interesting examples in section
IV, respectively.

1Note that the problem of maximization is reduced to the minimization
when we change the sign of Φ in (1). Hence, we will only discuss here the
problem of minimization.
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II. HARMONIC BALANCE CIRCUITS OF NONLINEAR

DEVICES

Analog integrated circuits are usually composed of many
kinds of nonlinear devices such as diodes, bipolar transistors
and MOSFETs, whose Spice models are described by the
several special functions such as exponential, square-root,
piecewise continuous functions and so on [14]. The Fourier
expansions in these devices cannot be described by analytical
forms. On the other hand, these devices in our HB circuits
are replaced by the equivalent circuit models using ABMs of
Spice which execute the Fourier expansions. To understand
our ideas, we consider a two-terminal element described by

i = f̂(v). (2)

Assume the input and output waveforms as follows;

v(t) = V0 +

M∑
k=1

(V2k−1 cos kωt + V2k sin kωt)

i(t) = I0 +

M∑
k=1

(I2k−1 cos kωt + I2k sin kωt)




, (3)

where M denotes the higher harmonic component to be taken
account in the analysis. The output Fourier coefficients are
described as follows;

I0 = f0 (V0, V1, · · · , V2M )
I1 = f1 (V0, V1, · · · , V2M )

· · · · · · · · ·
I2M = f2M (V0, V1, · · · , V2M )


 , (4)

where the Fourier coefficients can be numerically calculated
by the following formulas;

I0 =
1

2π

∫ 2π

0

f(v)dt

I2k−1 =
1

2π

∫ π

0

f(v) cos kωtdt

I2k =
1

π

∫ 2π

0

f(v) sin kωtdt




, (5)

where k = 1, 2, · · · ,M . The formulas can be applied to any
kind of function even to the piecewise continuous functions
[14]. The integrations can be numerically calculated using the
trapezoidal integration formula, and that they are realized with
ABMs of Spice, schematically [13]. Since bipolar transistors
and MOSFETs also have the parasitic capacitors and/or induc-
tors, we need to take account of these elements in the device
modules.

A. Parasitic capacitor

Now, assume that a nonlinear capacitor is the voltage-
controlled given by

qC = q̂C (vC) . (6)

We assume the capacitor voltage as follow;

vC = V0,C +

M∑
k=1

(V2k−1,C cos kωt + V2k,C sin kωt) . (7)

Then, we have

qC = Q0,C +

M∑
k=1

(Q2k−1,C cos kωt + Q2k,C sin kωt)

⇒ iC =

M∑
k=1

kω (−Q2k−1,C sin kωt + Q2k,C cos kωt)




. (8)

Thus, the nonlinear device models consisted of the nonlinear
resistors and capacitors are realized by the equivalent circuits
with the voltage-controlled current sources given by (4) and
(8).

B. Parasitic inductor

In the same way, we assume current-controlled inductor as
follows;

φL = φ̂L (iL) . (9)

We assume the inductor current as follows;

iL = I0,L +

M∑
k=1

(I2k−1,L cos kωt + I2k,L sin kωt) . (10)

Then, we have

φL = Φ0,L +

M∑
k=1

(Φ2k−1,L cos kωt + Φ2k,L sin kωt)

⇒ vL =

M∑
k=1

kω (−Φ2k−1,L sin kωt + Φ2k,L cos kωt)




. (11)

In this case, the nonlinear device model consisted of the
resisters and inductors are realized by the equivalent circuits
with the current-controlled voltage sources given by (4) and
(11).

Thus, 3-terminal bipolar transistors modeled by Ebers-Moll
model and/or Gummel-Poon model [14] are schematically
realized as shown in Fig.1. The corresponding device model
to MOSFETs is shown in Fig.2.
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Fig. 1. HB module of the bipolar transistor.
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Fig. 2. HB module of the MOSFET.

Note that the HB circuit consists of (2M+1)-subcircuits
corresponding to the DC, the fundamental and up to the M th
higher harmonic components.

Once these device modules are installed in our computer
library, we can easily formulate the HB circuits, and carry out
the frequency-domain analysis.
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III. OPTIMIZATION ALGORITHM

Now, we consider our frequency-domain optimization. Gen-
erally, the objective function (1) may be composed of the sev-
eral requirements such as the maximum output, low distortion,
phase margin, and so on. The ratios of requirements pk should
depend on the subject, in advance. Thus, the object function
is described as follow;

Φ(x, y) =

K∑
k=1

pkφk(x, y), (12)

where the signs of pk should be chosen properly,

|pk| < 1, (13)

and K is a number of requirements. In this case, x is the
circuit variables such as node voltages and/or currents which
are estimated by the solutions from the HB circuit in section
II, whose circuit equation is given as follows;

F (x, y) = 0, F (·, ·) : Rn �→ Rn. (14)

Then, the optimum point satisfies the following relations;

∂Φ

∂yk
= 0, (k = 1, 2, · · · , m). (15)

When we use the steepest descent algorithm, the descent
direction is given by − ∂Φ

∂yk
< 0, (k = 1, 2, · · · ,m) in

the parameter space y ∈ Rm. Although we can apply the
sensitivity analysis to find the direction of steepest descent,
our HB circuit containing bipolar transistors and MOSFETs
are too complicated for the sensitivity analysis. Therefore, we
apply the numerical differentiations to the calculation of the
descent directions. Namely, we have for a variable s,

∂y1

∂s
= −Φ1(x, y1 + ∆y1, y2, · · · , ym) − Φ0(x, y)

∆y1

∂y2

∂s
= −Φ2(x, y1, y2 + ∆y2, · · · , ym) − Φ0(x, y)

∆y2· · · · · · · · ·
∂ym

∂s
= −Φm(x, y1, y2, · · · , ym + ∆ym) − Φ0(x, y)

∆ym




. (16)

The flowchart of our optimization algorithm is shown in
Fig.3.
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Fig. 3. Flowchart of our steepest descent method.

The objective function Φ0(x,y) is estimated by the circuit
variables x and the parameter values y. The parameters y

are obtained as the voltages at the capacitors in our simulator
which satisfy

C1
dy1

dt
= −Φ1 − Φ0

∆y1

C2
dy2

dt
= −Φ2 − Φ0

∆y2

· · · · · · · · ·

Cm
dym

dt
= −Φm − Φ0

∆ym




. (17)

Note that the capacitor values play to improve the convergence
ratios in our optimization.

IV. ILLUSTRATIVE EXAMPLES

To understand the ideas of our optimization algorithm, let us
consider a simple problem to find out the optimum capacitance
and inductance giving the maximum power consumption at RL

in Fig.4.
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Fig. 4. A simple optimization problem.

They are theoretically given as follows;

L =
1

ω

√
RL (R0 − RL), C =

1

ωR0

√
R0 − RL

RL
(18)

Now, let us find the values with our optimization approach
shown in Fig.5.
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Fig. 5. Optimization circuit,

ω = 1rad/s, Ec = 1V, RL = 1Ω, R0 = 3Ω.

Fig.5(a) shows the Cosine and Sine subcircuits [13] in our
HB circuit. Since the circuit is driven by EC cos ωt, the
Cosine circuit has a DC source EC . C and L are replaced
by the controlled sources, respectively. The objective function
is defined by

Φ(C,L) = RL

(
I2
Lc + I2

Ls

)
. (19)

Then, the optimization circuit shown in Fig.5(b) consists of 3
subcircuits Φ(C,L), Φ(C + ∆C,L), Φ(C,L + ∆L), where
C and L are given by the voltages of capacitors C1 and C2,
respectively The result with the transient analysis of Spice is
shown in Fig.6. The values C and L are exactly equal to those
values from (18).
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Fig. 6. Spice simulation results,

∆C = 0.001, ∆L = 0.001.

Next, we consider a high frequency RF power amplifier
shown in Fig.7 which is used in mobile-phones [5], where Lgs
are the parasitic inductances. We want to optimize the circuit
parameters in such manner that the output power consumption
at RL becomes maximum by adjusting RL and ICC . We
first modeled the transistors with Gummel-Poon model, and
obtained the HB modules, where we consider up to the third
higher harmonic components.
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Fig. 7. RF power amplifier,

L1 = L2 = 0.1mH, LG = 10nH, C1 = C2 = C3 = C4 = 1nF, VCC = 3V,

Vbb = 3V, Rb1 = Rb2 = 1Ω, Rb = 1Ω.

We have calculated the frequency response curve in the
region ω = 108 − 1011. The waveform is nearly sinusoidal,
and the amplitudes are exactly equal to the result from
transient analysis. In our optimization algorithm for getting the
maximum output power, we have changed the current sources
and the load resistor in the region ICC = 1mA − 7mA, and
RL = 0.1 − 70Ω, respectively. Thus, we can stably find out
the optimum point as shown in Fig.9.

V. CONCLUSIONS AND REMARKS

In this paper, we have proposed a new Spice-oriented
frequency-domain optimization technique, whose objective
function can be obtained from the HB circuit. We first trans-
form the nonlinear devices such as bipolar transistors and
MOSFETs into the corresponding HB modules. Our opti-
mization technique depends on the steepest descent algorithm
which is realized by the equivalent circuit. The optimum point
is given as the equilibrium point the transient response, which
can be stably solved by the transient analysis of Spice.
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Fig. 8. Frequency response curve,

ICC = 1mA, RL = 36.22Ω, vin = 0.1 cos ωt.
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Fig. 9. The result of our steepest descent method.

For future problem, we need to extend our algorithm to the
problems with the multiple optimum points.
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