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Abstract
Distortion analysis of nonlinear circuits is very important

for designing analog integrated circuits and/or communica-
tion systems. We consider here the frequency-domain anal-
ysis of CMOS operational amplifiers in the high frequency
domain. In this case, the parasitic capacitors among source,
drain, gate and substrate of MOSFETs give large effects to
the characteristics. In this study, we propose a harmonic bal-
ance method to solve the frequency response curves. It is
known that the determining equations are given by the ana-
lytical functions only when the nonlinear characteristics are
given by polynomial functions. Unfortunately, many nonlin-
ear devices are modeled by the use of many kinds of special
functions and piecewise continuous functions, so that we can-
not apply analytical harmonic balance methods. Therefore,
we develop the Fourier Transfer Circuit Models (FTCM) us-
ing ABMs (Analog Behavior Models) of Spice which carries
out the Fourier transformation of MOSFETs containing non-
linear parasitic capacitors.

1. Introduction
Recently, owing to the rapid progress of integrated circuit

technologies, high frequency CMOS amplifiers have been
frequently used in high performance RF communication sys-
tems [1-3]. On the other hand, the characteristics of MOS-
FETs have strong nonlinearity. Especially, the parasitic ca-
pacitors in the high frequency give large effects to the char-
acteristics [2,4-6].

There are two techniques in the frequency domain analysis
of nonlinear circuits; namely, Volterra series [4-7] and har-
monic balance methods [8-10]. The Volterra series methods
can be usually applied to weak nonlinear circuits. In this case,
the characteristics of nonlinear elements should be described
by the power series expansions in the vicinity of the driving
point. The task is not easy for nonlinear electronic circuits
such as bipolar transistors and MOSFETs [6]. On the other
hand, the harmonic balance methods are usefully applied to
the circuits containing any kind of nonlinear devices. How-
ever, it is also not easy to derive the circuit equations and the
determining equations for the harmonic balance method [8].

In this paper, we propose a new Spice-oriented harmonic
balance method solving the frequency response curves of
CMOS amplifiers [10-11]. Firstly, we develop the “packaged
device modules” executing the Fourier expansions of MOS-
FETs and bipolar transistors. Then, the determining equa-
tions are given in the form of coupled equivalent circuits. The
frequency response curves can be calculated by DC analysis
of Spice. Thus, our simulators are really user-friendly.

We show the idea of the proposed FTCM in Section 2, and
the application to MOSFET in Section 3. The illustrative ex-
amples are introduced in Section 4.

2. Fourier transfer circuit model
Analog integrated circuits are usually composed of many

kinds of nonlinear devices such as diodes, bipolar transis-
tors and MOSFETs, whose Spice models are described by
the special functions such as exponential, square-root, piece-
wise continuous functions and so on [12]. For these devices,
the Fourier coefficients cannot be described in the analytical
forms. Therefore, using ABMs of Spice [13], we will real-
ize the equivalent circuits executing the Fourier expansions
in the harmonic balance methods. Now, consider a nonlinear
function described by

i = ĝ(v(t)). (1)

Assume that the input and output waveforms are described as
follows;

v(t) = V0 +
K∑

k=1

(V2k−1 cos kωt + V2k sin kωt)

i(t) = I0 +
K∑

k=1

(I2k−1 cos kωt + I2k sinkωt)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2)

where K shows the highest harmonic component in our anal-
ysis. Here, applying the discrete Fourier transformation to
(2), the Fourier coefficients of the output current are described
as follows;
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I0 = 1
T

∫ T

0 ĝ(v(t))dt

I2k−1 = 2
T

∫ T

0 ĝ(v(t)) cos kωtdt

I2k = 2
T

∫ T

0 ĝ(v(t)) sin kωtdt
k = 1, 2, · · · , K

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (3)

Next, let us apply the following trapezoidal integration for-
mula to (3);
∫ b

a

f(x)dx =
h

2
(f0 + fn) + h(f1 + f2 + · · · + fn−1) (4)

where the step size of the integration is h = (a− b)/n. Then,
the truncation error is given by f (2)h2/12n, where (2) shows
the second derivative. We show that (3) with (4) can be real-
ized by the equivalent circuit model.

The blocks in Fig. 1 are constructed by the ABMs of Spice,
where the interval [0, 2π] of the integration is divided by 2K
equal divisions. The value of θk = 2π/2K is obtained by the
node voltage at the Kth resistor in the resistive circuit.
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Figure 1: Fourier transfer circuit model.

To investigate the accuracy of our FTCM, we calculate the
following Fourier expansion:

ex cos θ = I0(x) + I1(x) cos θ + I2(x) cos 2θ + · · · . (5)

The simulation result for h = 2π/20 in Fig. 1 is I1(10) =
2761 at N=1, x=10 which is exactly equal to the value from
the table of Bessel function. Thus, we found that the FTCM
can get the sufficiently exact solution even with 2K=10 to 20
divisions of the interval 2π.

3. FTCM of MOSFET
Now, consider FTCM of MOSFET. The drain current of

nMOS is given by the Schichman-Hodges model as follows
[1-2]:
(a) Linear region

(VGS > VT , 0 < VDS < VGS − VT )

ID =
k′W
L

[
(VGS − VT ) − VDS

2

]
VDS(1 + λVDS). (6)

(b) Saturation region
(VGS > VT , VDS ≥ VGS − VT ):

ID =
k′W
2L

(VGS − VT )2(1 + λVDS). (7)

The threshold voltage is given by

VT = VT0 + γ(
√

φ − VBS −
√

φ). (8)

The parasitic capacitors are shown in Fig. 2. When the gate
voltage is less than the threshold voltage, the channel does
not appear. However, in the linear region, the channel equally
spread between the source and drain terminals, so that CGD

and CGS contain equal 1
2CoxWL. On the other hand, in the

saturation region, the channel spread like as Fig. 2. CGD

contains 1
3CoxWL and CGS does 2

3CoxWL. They have also
depletion capacitances given in (9) between substrates. Thus,
the characteristics of parasitic capacitors are given in Table 1
[12]. The circuit model in high frequency is shown in Fig. 3.

CSB =
ASCj0

[1 + (VSB/φ)]m
, m � 0.5. (9)
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Figure 2: Parasitic capacitors Figure 3: MOSFET in the

for nMOS. high frequency.

Table 1: Terminal capacitances of a MOSFET.
Regions

Parasitic
capacitors Linear region Saturation region

CGD CoxWLD + 1
2
CoxWL CoxWLD

CGS CoxWLD + 1
2
CoxWL CoxWLD + 2

3
CoxWL

CBG 0
1
3 WLCoxCpn(VDB)

Cox+Cpn(VDB)

CBD ADCpn(VDB) ADCpn(VDB)
+ 1

2
WLCpn(VDB)

CBS ASCpn(VSB) ASCpn(VSB)
+ 1

2
WLCpn(VSB) + 2

3
WLCpn(VSB)

Note that the characteristics of the nonlinear parasitic ca-
pacitors in Table 1 are piecewise discontinuous functions.
The results obtained using the paramerter values given in Ta-
ble 2 are shown in Figs. 4 and 5.
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Observe that the parasitic capacitors give large effects in
the high frequency, though their order is 10−15F .

Table 2: MOS parameter [13] (MKS system).
Mark pMOS nMOS

L 1.2 × 10−6 1.2 × 10−6

W 7.8 × 10−6 7.8 × 10−6

LD 900.1 × 10−12 　 900.1 × 10−12

pVT0, nVT0 -0.8311 0.6081
kp, Kn 19.34 × 10−6 74.21 × 10−6

λ 0.1 0.2
pγ, γ 0.3046 0.6166
Cj0 259.97 × 10−6 280.65 × 10−6

Other parameters：
AS = AD = 20 × 10−12 , tox = 30.4 × 10−9, φ = 0.7

Cox = 1.135 × 10−3.

Now, let us derive the FTCM of MOSFET. We assume that
the terminal voltage is given by equation (10).

vt(t) = Vt,0 +
K∑

k=1

(Vt,2k−1 cos kωt + Vt,2k sin kωt) (10)

t = D, G, S, B.
Here, D,G,S,B correspond to the terminal shown in Fig. 3.
First, we assume θ = ωt, and divide period 2π in equal step
size [θ = 0, 2π/K, 4π/K, . . . , 2π] , and calculate the current
at each point. And we apply a trapezoidal integration formula
of equation (4) instead of equation (3) whose calculations are
carried out by Fig. 1 using Spice.

Thus, the Fourier coefficients are calculated as follows:

it(t) = It,0 +
K∑

k=1

(It,2k−1 cos kωt + It,2k sin kωt) (11)

t = D, G, S, B.
In the same way, the response of capacitor charges are also
expanded into the Fourier series as follows;

qp(t) = Qp,0 +
K∑

k=1

(Qp,2k−1 cos kωt+Qp,2k sin kωt) (12)

p = DS, GS, DG, DB, GB, SB.
We differentiate equation (12) with respect to time, the cur-
rent are given as follows:

ip(t) =
K∑

k=1

kω(−Qp,2k−1 sin kωt + Qp,2k cos kωt). (13)

Comparing each harmonic component, we can obtain equiv-
alent circuits corresponding to determining equations. If we
assume that the numbers of harmonic component is K , the
numbers of subcircuit are 2K + 1. They are combined with
controlled sources in each other [10].

Linear

subnetwork

D

G

S

B

D

G

S

B

D

G

S

B

circuit

module

kth cosine

MOS MOS

kth sine

circuit

module

kth cosine

Linear

circuit

Linear

circuit

kth sine

(a) Network (b) kth cosine module (c) kth sine module

Figure 6: Sine-Cosine circuits using MOS modules for kth harmoninc

components.

4. Fourier analysis of CMOS differential amplifiers
4.1 CMOS amplifier

Let us calculate the frequency response curves of differ-
ential amplifiers, whose MOSFET parameters are given by
Table 2. In our simulations, we consider until the 3rd har-
monic component.

First, we consider the amplifier circuit using the character-
istics of a CMOS inverter circuit shown by Fig. 7.
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VDD = 3[V ], VB = 1.2[V ], C = 10[pF ], R = 100[kΩ].

Figure 7: CMOS amplifier circuit.
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Figure 10: Frequency responses of CMOS inverter amplifier.

The output voltage waveform vout(t) to the input vin(t) =
0.1 sin 107t is shown by Fig. 8. The output waveform is
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largely distorted. Next, changing the amplitude of the input
voltage from Vin = 0 to 1, the responses of the output wave-
forms and the higher harmonic components are shown by Fig.
9. Next, we calculated the frequency response curves, where
the frequency is changed by ω = 106+n for a variable n, and
assume the input by Vin = 0.1[V ]. Thus, we can obtain the
frequency response curves shown by Fig. 10.

4.2 Differential amplifier [2]
Next, we consider an n-channel differential amplifier given

by Fig. 11. The results in this case are shown in Figs. 12 and
13.
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VDD = VB = 3[V ], V1 = 2[V ], C = 10[pF ], R = 100[kΩ].
Figure 11: An n-channel differential amplifier.
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Figure 12: Frequency response curves of the differential amplifier.
Vin = 0.1.
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Figure 13: Input and output characteristics of the differential amplifier.
ω = 109[rad/sec].

The results in Fig. 12 are the frequency response curves for
the input [Vin = 0.1[V ]]. Next, we calculated the input and

the output characteristics at ω = 109[rad/sec]. The results
are shown by Fig. 13.

5. Conclusions and remarks
In this study, the nonlinear devices such as bipolar transis-

tors and MOSFETs were transformed into the modules exe-
cuting the Fourier transformations. Using these device mod-
ules, the nonlinear circuit was transformed into the Fourier
circuit corresponding to the determining equations of the har-
monic balance method. They were solved with the DC anal-
ysis of Spice.
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