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Abstract

Solving combinatorial optimization problem is one of the im-
portant applications of neural network (abbr. NN). However,
the solutions are often trapped into a local minimum and do
not reach the global minimum. In order to avoid this critical
problem, several people proposed the method adding some
kinds of noise.

In this study, we consider torus noise generated by the
sine circle map for the Hopfield NN. By computer simula-
tions, solving abilities of Hopfield NN for quadratic assign-
ment problem (QAP) with various kinds of noises based on
the torus noise are investigated.

1. Introduction

The use of Hopfield NN in broad fields is expected, such
as combinatorial optimization problem, associative memory,
and pattern recognition. If we choose connection weights be-
tween neurons appropriately according to given problems, we
can obtain a good solution by the energy minimization prin-
ciple. However, the solution are often trapped into a local
minimum and do not reach the global minimum. In order
to avoid this critical problem, several people proposed the
method adding some kind of noise for solving traveling sales-
man problem (TSP) with the Hopfield NN [1]. Hayakawa and
Sawada pointed out the chaos near the three-periodic window
of the logistic map gains the best performance [2]. They con-
cluded and that the good result might be obtained by a prop-
erty of the chaos noise; short time correlations of the time-
sequence. Hasegawa et al. investigated solving abilities of
the Hopfield NN with various surrogate noise, and they con-
clude that the effects of the chaotic sequence for solving op-
timization problems can be replaced by stochastic noise with
autocorrelation [3]. We have also studies the reason of the
good performance with Hopfield NN with chaotic noise. We
imitated the intermittency chaos noise by the burst noise gen-
erated by Gilbert model [4] with 2 states; a laminar state and
a burst state. We conclude that the irregular switching of lam-
inar part and burst part is one of the reasons of the good per-
formances of the chaotic noise [5][6].

In this study, we consider torus noise generated by the sine
circle map. We tune the parameters of the sine circle map
to generate torus including intermittent feature. Further, we
propose a mix noise, which is a mixture of the intermittent
torus and chaos/random noise, in order to investigate the per-
formance of the noise including intermittet feature. By com-
puter simulations, solving abilities of Hopfield NN for QAP
with various kinds of noises based on the torus noise are in-
vestigated.

2. Solving QAP with Hopfield NN

Various methods are proposed for solving QAP which is
one of the NP-hard combinatorial optimization problems.
QAP is expressed as follows: given two matrices, distance
matrix C and flow matrix D, and find the permutation P which
corresponds to the minimum value of the objective function
f (P) in (1).

f(P) =

N
∑

i=1

N
∑

j=1

CijDP (i)P (j), (1)

where Cij and Dij are the (i, j)-th elements of C and D, re-
spectively, P (i) is the i-th element of the vector P, and N

is the size of the problem. There are many real applications
which are formulated by (1). One example of QAP is to find
an arrangement of the factories to make a cost the minimum.
The cost is given by the distance between the factories and
flow of the products between the factories. Other examples
are the placement of logical modules in an IC chip, the distri-
bution of medical services in large hospital, and so on.

Because QAP is very difficult, it is almost impossible to
solve the optimum solutions in large problems. The largest
problem which is solved by deterministic methods may be
only 24 in recent study. Further, computation time is very
long to obtain the exact optimum solution. Therefore, it is
usual to develop heuristic methods which search nearly opti-
mal solutions in reasonable time.

For solving N -element QAP by Hopfield NN, N×N neu-
rons are required and the following energy function is defined
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to fire (i, j)-th neuron at the optimal position:

E =

N
∑

i,m=1

N
∑

j,n=1

wim;jnximxjn +

N
∑

i,m=1

θimxim. (2)

The weight between (i, m)-th neuron and (j, n)-th neuron
and the threshold of the (i, m)-th neuron are described by:

wim;jn = −2

{

A(1−δmn)δij +βδmn(1−δij)+
CijDmn

q

}

(3)
θim = A + B (4)

where A and B are positive constants, and δij is Kroneker’s
delta. The state of N×N neurons are asynchronously up-
dated due to the following difference equation:

xim(t+1) = f

(

N
∑

j,n=1

wim;jnxim(t)xjn(t)−θim+βzim(t)

)

(5)
where f(·) is the sigmoidal function defined as follows:

f(x) =
1

1 + exp
(

−
x

ε

) , (6)

zim is additional noise, and β limits the amplitude of the
noise.

3. Intermittency noise

3.1. Chaos noise

The logistic map is used to generate the intermittency
chaos noise.

ẑim(t + 1) = αz ẑim(t)(1 − ẑim(t)). (7)

Increasing the parameter αz, the logistic map behaves chaot-
ically via a periodic-doubling cascade. Further, it is well
known that the map produces intermittent burst just before
periodic-windows appear. Figure 1(a) shows an example of
the intermittency chaos near the three-periodic window ob-
tained from (7) for αz = 3.82676. As we can see from
Fig. 1(a), the chaotic time series could be divided into two
phases; laminar part of periodic behavior with period three
and burst parts of spread points over the invariant interval.
We obtain fully-developed chaos shown in Fig. 1(b) for αz =
3.999. This time series are more similar to random uniform
noise.

When we inject the intermittency chaos noise to the Hop-
field NN, we normalize ẑim by the following equation.

zim(t) =
ẑim(t) − z̄

σz

(8)

where z̄ and σz are the average and the standard deviation of
ẑ(t), respectively.
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(a) Intermittency chaos (αz=3.82676).
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(b) Fully-developed chaos (αz=3.999).

Figure 1: Chaotic time series.

3.2. Torus noise

The following sine circle map is used to generate the torus
noise.

ŷim(t + 1) = ŷim(t) + αy sin {6 ŷim(t)} + D. (9)

Figure 2 shows the shape of the sine circle map for αy=0.04
and D=0.05. We tune the parameters of the sine circle map to
generate torus including intermittent feature. Figure 3 shows
an example of intermittency torus.

When we inject the intermittency torus noise to the Hop-
field NN, we normalize ŷim by the following equation.

yim(t) =
ŷim(t) − ȳ

σy

(10)

where ȳ and σy are the average and the standard deviation of
ŷ(t), respectively.

3.3. Simulated results

We carry out computer simulations of the Hopfield NN
with the intermittency chaos noise and the intermittency torus
noise for 12-element QAP. The problem used here was cho-
sen from the site QAPLIB [7] named “Nug12,” The global
minimum of this target problem is known as 578. The param-
eters of the Hopfield NN are as A = 0.9, B = 0.9, q = 140,
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Figure 2: Sine circle map.
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αy=0.04 and D=0.05.

Figure 3: Intermittency torus time series.

ε=0.02, and the amplitude of the injected noise is fixed as
β = 0.55.

The average solution and the best minimum solution are
summarized in Table 1. For comparison, the results for the
cases of the fully-developed chaos noise and random noise
are shown together. The results show that the intermittency
chaos noise gains the best performance. The intermittency
torus noise is better than the random noise, but still far from
the chaotic noises.

4. Mix noise

Since the intermittency torus noise does not have a better
performance, we try to add a burst feature of the intermittency
chaos. Mix noise is made by inserting fully-developed chaos
or random noise into the intermittency torus noise. The ob-
tained mix noise is shown in Fig. 4. Figures 4(a) and (b) are
the mix noise obtained by inserting the fully-developed chaos
with different rates. While Figs. 4(d) and (e) are the mix noise
obtained by inserting random noise with different rates. The
simulated results of the Hopfield NN with the mix noise are
summarized in Table 2. The problem and the parameters of
the Hopfield NN are the same as the case of the intermittency
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(a) torus : chaos = 2 : 8.
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(b) torus : chaos = 7 : 3.
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(c) torus : random = 2 : 8.
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(d) torus : random = 7 : 3.

Figure 4: Mix noise.
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Table 1: Solving abilities of intermittency noise.
Chaos Noise Intermittency Random Noise

Iteration Intermittency Fully-developed Torus Noise
average best average best average best average best

2000 613.4 586 636.0 606 667.0 638 724.2 680
4000 607.8 586 636.0 606 667.0 638 724.2 680
6000 607.8 586 636.0 606 667.0 638 724.2 680
8000 604.0 586 636.0 606 667.0 638 724.2 680

10000 604.0 586 636.0 606 667.0 638 724.2 680

Table 2: Solving abilities for of mix noise.
Mix Noise

Iteration torus noise : chaos noise torus noise : random noise
2 : 8 7 : 3 2 : 8 7 : 3

average best average best average best average best
2000 604.4 578 617.4 586 612.0 582 614.6 590
4000 595.2 578 608.6 578 604.8 582 604.2 590
6000 591.6 578 601.4 578 601.6 582 599.8 586
8000 590.4 578 595.6 578 601.6 582 598.8 586

10000 587.8 578 595.6 578 596.6 582 598.0 586

noises in Table 1.
We can see that the mix noise with chaos achieves the best

performance and that the mix noise with random noiose also
achieves a good performance.

We can conclude that the burst feature of the noise is im-
portant to gain a good performance of the Hopfield NN for
QAP.

5. Conclusions

In this study, we have considered the torus noise generated
by the sine circle map for the Hopfield NN. We have inves-
tigated the performance of various noises based on the torus
noise injected to Hopfield NN for QAP. By computer simu-
lations, we confirmed that the mix noise of the intermittency
torus noise with chaos achieved the best performance.
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