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Abstract

In this study, we try to implant chaotic features into the learn-
ing algorithm of self-organizing map. We call this concept as
Chaotic SOM (CHAOSOM). As a first step to realize CHAO-
SOM, we consider the case that learning rate and neighboring
coefficient of SOM are refreshed by chaotic pulses generated
by the Hodgkin-Huxley equation. We apply the CHAOSOM
to solve a traveling salesman problem and confirm that the
chaotic feature improves the performance.
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1. Introduction

The Self-Organizing Map (SOM) is a one of the neural net-
work methods for unsupervised learning, introduced by Ko-
honen in 1982 [1]. Self-Organization is to change an internal
structure to adjust to the signal from the outside. SOM is a
model simplifying self-organization process of brain. SOM
obtains a statistical feature of input data and is applied to a
wide field of data classifications. SOM can be also applied
to the traveling salesman problem (TSP) [1]. TSP is one of
combinatorial optimization problems and a prominent illus-
tration of a class of problems in computational complexity
theory which are hard to solve. This problem is to search the
shortest round-trip route of visiting each city once and then
returns to the starting city, when given a number of cities and
the distance of traveling from any city to any other city.

On the other hand, chaos is said to exist in the brain and
to play an important role to realize higher functions of in-
formation processing. Several researchers have tried to ex-
ploit the features of chaos to solve combinatorial optimization
problems and some good results have been obtained [2]-[5].
Hence, it is important to investigate the possibility of adding
chaotic features to SOM. Actually, chaotic self-organization
map has been proposed in [6]. In [6], chaos is used to choose
the winner neuron in a probabilistic manner. However, the
effect is not examined for any difficult problems.

In this study, we try to implant chaotic features into the
learning algorithm of SOM. We call this concept asChaotic

SOM (CHAOSOM). As a first step to realize CHAOSOM, we
consider the case that learning rate and neighboring coeffi-
cient of SOM are refreshed by chaotic pulses generated by
the Hodgkin-Huxley equation [7]. We apply the CHAOSOM
to solve TSP and confirm that the chaotic feature improves
the performance.

2. Self-Organizing Map (SOM) Algorithm

We explain the learning algorithm of the conventional
SOM for TSP. SOM consists ofm neurons located on a one-
dimensional line like a circle. The basic SOM algorithm is
iterative. Each neuroni has ad-dimensional weight vector
wi = (wi1, wi2, · · · , wid) (i = 1, 2, · · · ,m). The initial val-
ues of all the weight vectorsw are given over the input space
at random.

(SOM1) An input vectorxj = (xj1, xj2, · · · , xjd)(j =
1, 2, · · · , N) is inputted to all the neurons at the same time
in parallel.
(SOM2) Distances betweenxj and all the weight vectors are
calculated. The winner neuron, denoted byc, is the neuron
with the weight vector closest to the input vectorxj ,

c = arg min
i
{‖wi − xj‖}. (1)

In this study, Euclidean distance is used for (1).
(SOM3) A set of neighboring neurons of the winner neuron
is denoted asNc(t). The weight vector of the winner neuron
c and the neighboring neuronNc(t) are updated as;

wi(t + 1) = wi(t) + α(t)(xj −wi(t)), i ∈ Nc(t) (2)

Both the learning rateα(t) and the neighboring neuronNc(t)
decrease with time, in this study, according to the following
equations;

α(t) =
1

ln(t + 2)
,

Nc(t) =
⌊
− 1

nt
t +

m

6
+ 1

⌋
,

(3)

whereb c denotes the floor function.
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(SOM4) The steps from (SOM1) to (SOM3) are repeated for
all the input data.
(SOM5) Each input dataxj (j = 1, 2, · · · , N) is assigned
to the neuron with the weight vector closest toxj in order.
However, it is only one input vector which is assigned to one
neuron, so, if another input data is assigned to the closest neu-
ron already, this input data is assigned to the second-closest
neuron. We can route the tour of the input data set by sorting
input data in numerical order of neuron assigned to each input
data.

3. Chaotic Self-Organizing Maps (CHAOSOM)

3.1. Hodgkin-Huxley Equations

The Hodgkin-Huxley equation is the mathematical model
which simulate the action potential in a squid giant axon,
proposed by Hodgkin and Huxley [7]. The Hodgkin-Huxley
equation is expressed as;





dV

dt
= − 120.0m3h(V − 55.0)

− 36.0n4(C + 72.0)
− 0.24(V + 49.387),

dm

dt
=

0.1(−35− V )

exp
(−35− V

10

)
− 1

(1−m)

− 4 exp
(−60− V

18

)
m,

dh

dt
= 0.07 exp

(−60− V

20

)
(1− h)

− 1

exp
(−30− V

10

)
+ 1

h,

dn

dt
=

0.01(−50− V )

exp
(−50− V

10

)
− 1

(1− n)

− 0.125 exp
(−60− V

80

)
n,

(4)

whereV is a membrane potential,m andh denote a sodium
activation coefficient and a sodium inactivation coefficient,
respectively, andn is a potassium activation coefficient.I
denotes the current stimulus.

The Hodgkin-Huxley equation is known to generate
chaotic oscillation for periodic external force [8][9]. Figure1
shows the time series of the first variableV (t), when (4) is
stimulated by the following external force.

I = I0 + A sin 2πft. (5)

whereI0=20, A=40 andf=300.2. We can see that the time
interval between spikes is not completely periodic. By chang-
ing the parameter values, the interval becomes more irregular.
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Figure 1:Chaotic response of Hodgkin-Huxley equation.

3.2. Learning Algorithm

The basic algorithm of CHAOSOM is the same as SOM,
however, the important feature of CHAOSOM is to refresh
the learning rate and neighboring coefficient at the timing
of the spikes generated chaotically by the Hodgkin-Huxley
equation.

We explain the learning algorithm of CHAOSOM in detail.
The learning rateαs(s) and the neighboring neuronNcs(s)
of CHAOSOM are defined as;

αs(s) =
1

ln(s + 2)
,

Ncs(s) =
⌊
− 1

ns
s +

m

6(p + 1)
+ 1

⌋
,

(6)

wherep represents the number of the spikes ofV (t) in (4)
and increases by one. In order to adjust the time constant
of (4) to the CHAOSOM algorithm, we use the value of
Vk = V (k × ∆t) for ∆t=1/150. The parameter steps in-
creases monotonically with timet, however, if the chaotic
signalVk generates a spike, the parameter steps is refreshed
to a smaller value by the following equation;

s = 500p. (7)

Furthermore, at the same timing of the spikes, we route the
tour of the input data set according to (SOM5), Finally, the
minimum tour among the obtained tours during the learning
is defined as the result of CHAOSOM.

4. Simulation Results

We carry out the computer simulations for SOM and
CHAOSOM. The target problem of TSP, namely the input
data set, isatt48from TSPLIB. The number of the input data
is N = 48 and the optimal solution of this problem is known
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as 33524. We iterated the simulations 100 times with dif-
ferent initial conditions and the average values are evaluated.
Each SOM hasm = 96 neurons, namely twice of the number
of input data. The parameters of the learning are chosen as
follows,

nt = 600, ns = 100.

The maximum number of the learning of each SOM is 15,000
times.

The example of the learning process of CHAOSOM are
shown in Figs.2. We can see that CHAOSOM obtains a fea-
ture of input data as learning progressed.

The results are summarized in Table.1. In the table, Error
means the difference between the obtained distances and the
optimal distance and Error (%) means the percentages when
the optimal distance is regarded as 100%. We can see that the
CHAOSOM improve the results.

Table 1:Results of solving TSP using SOM and CHAOSOM.
SOM CHAOSOM

Distance 34850 34202
Error 1326 678

Error (%) 3.96 2.02

5. Conclusions

In this study, we have proposed a concept of CHAOSOM,
which is a collaboration between chaos and SOM. We con-
sidered the case that learning rate and neighboring coefficient
of SOM were refreshed by chaotic pulses generated by the
Hodgkin-Huxley equation. We applied the CHAOSOM to
solve a traveling salesman problem and confirmed that the
chaotic feature improved the performance.

Actually, this result is just a first step to develop the CHAO-
SOM concept. More effective implantation of chaotic fea-
tures into SOM is our important future subject.
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Figure 2:Example of learning process of CHAOSOM. (a)t = 0 (Initial state). (b)t = 1000. (c) t = 1791 (First learning
result). (d) First result of solving TSP. (e) Best result of solving TSP in this learning.
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