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Abstract

In this research, synchronization phenomena observed from
simple chaotic circuits coupled by mutual inductors are in-
vestigated. A simple three-dimensional autonomous circuit
is considered as a chaotic subcircuit. By carrying out circuit
experiments and computer calculations for two or three sub-
circuits cases, various kinds of synchronization phenomena
of chaos are observed.

1. Introduction

Many nonlinear dynamical systems in various fields have
been confirmed to exhibit chaotic oscillations. Recently ap-
plications of chaos to engineering systems are expected such
as chaos noise generators, control of chaos, synchronization
of chaos, and so on. In those applications, we are especially
interested in synchronization of chaos. Synchronization and
the related bifurcation in chaotic systems are good models to
describe various high-dimensional nonlinear phenomena in
the field of natural science and many excellent studies on syn-
chronization of chaos have been reported. Now mechanisms
of chaotic phenomena generated in low-dimensional systems
have been elucidated theoretically, and complex phenomena
observed from higher dimensional circuits represented by
coupled plural chaotic circuits attract attentions [1]-[3].

In this research, synchronization phenomena observed from
simple chaotic circuits coupled by mutual inductors are inves-
tigated. A simple three-dimensional autonomous circuit is
considered as a chaotic subcircuit. This subcircuit is a sym-
metric version of the chaotic circuit proposed by Inabaet al.
[4]. They used ideal piecewise linear model of diodes in [4],
but in this research thei − v characteristics of the nonlinear
resistor consisting of diodes are approximated by a smooth
function. This is more real than piecewise linear approxima-
tion in the sense that every real elements in the natural field
are not piecewise linear. By carrying out computer calcula-
tions for two or three subcircuits cases, various kinds of syn-
chronization phenomena of chaos are observed. In the two
subcircuits case, in-phase and anti-phase synchronization are
observed. Moreover in-phase and three-phase synchroniza-
tion are observed in the three subcircuit case.

Figure 1:Circuit model.

2. Circuit Model

Fig. 1 shows the circuit model. In the circuit,N identi-
cal chaotic circuits are coupled by mutual inductors. Each
chaotic subcircuit is a symmetric version of the circuit model
proposed by Inabaet al. [4]. It consists of three memory ele-
ments, one linear negative resistor and one nonlinear resistor,
which is realized by connecting some diodes, and is one of the
simplest autonomous chaotic circuits. First, we approximate
thei− v characteristics of the nonlinear resistor consisting of
diodes by the following function.

vd(ik) = 9
√

rd ik. (1)

By changing the variables and parameters,

t =
√

(L1 −M) C τ, a =
√

C

L1 −M
,

b = 8
√

rd a, Ik = a b xk, ik = a b yk, vk = b zk,

“ · ” =
d

dτ
, α =

L1 −M

L2
, β = r a, γ =

M

L1
,

(2)

               2006 RISP International Workshop
on Nonlinear Circuits and Signal Processing (NCSP'06)
               Waikiki Beach Marriott, Honolulu,
                  Hawaii, USA, March 3-5, 2006

- 293 -



(a)

(b)

(c)

(d)

(e)

(1) (2) (3) (4)

Figure 2: In-phase synchronization of two chaotic circuits.γ =
0.01 (M = 2.63mH). (a)β = 0.24 (r = 585Ω). (b) β = 0.27 (r =
708Ω). (c) β = 0.29 (r = 753Ω). (d) β = 0.293 (r = 758Ω). (e)β
= 0.3 (r = 771Ω). (1) x1 vs. x2. (2) x1 vs. z1. (3) x2 vs. z2. (4)
Circuit experimental results.I1 vs. I2. 10 V/div.

the circuit equations are normalized and described as

ẋk = β(xk + yk)− zk

− γ

1 + (N − 1)γ

N∑

j=1

{β(xj + yj)− zj}

ẏk = α{β(xk + yk)− zk − f(yk)}
żk = xk + yk (k = 1, 2, · · · , N)

(3)

where
f(yk) = 9

√
yk. (4)

In the following circuit experiments, the values of the in-
ductors and the capacitor in each chaotic subcircuit are fixed
and those values are measured asL1 = 208 mH± 0.5%,L2

= 10.22 mH± 1.6% andC = 33.58 nF± 1.4%. While in
the following computer calculations, the parameter value cor-
responding to the inductors is fixed asα = 18.0 and (3) is
calculated by using the Runge-Kutta method with step size
∆t = 0.001.

3. Two Subcircuits Case

In this section, we consider the case ofN = 2, namely two
chaotic subcircuits are coupled by a mutual inductor.
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Figure 3:Anti-phase synchronization of two chaotic circuits.γ =
0.4 (M = 102mH). (a)β = 0.24 (r = 571Ω). (b)β = 0.25 (r = 646Ω).
(c) β = 0.265 (r = 655Ω). (d) β = 0.273 (r = 689Ω). (e) β = 0.28
(r = 706Ω). (1) x1 vs. x2. (2) x1 vs. z1. (3) x2 vs. z2. (4) Circuit
experimental results.I1 vs. I2. 10 V/div.

Computer calculated results and the corresponding circuit
experimental results are shown in Figs. 2 and 3. Please note
that in-phase and anti-phase synchronizations coexist, but
subcircuits are easy to be synchronized at in-phase for lower
γ and at anti-phase for higherγ. Fig. 2(a) shows in-phase
synchronization of one-periodic attractors. As the parameter
β increases, one-periodic attractor bifurcates to chaotic at-
tractor via period-doubling route keeping in-phase synchro-
nization. When the attractor is chaotic, two subcircuits are
not synchronized completely, but are almost synchronized as
shown in Figs. 2(d) and (e). We call the situation as quasi-
synchronization of chaos.

While, Fig. 3 shows anti-phase synchronization. The
anti-phase synchronization undergoes complicated bifurca-
tion route explained as follows. One-periodic attractor with
symmetry on thex1 − x2 plane in Fig. 3(a) bifurcates to two
one-periodic attractors with asymmetry as Fig. 3(b). Each
asymmetric attractor bifurcates to torus via Hopf bifurcation
as Fig. 3(c) and to chaos via torus breakdown as Fig. 3(d).
Two asymmetric chaos collide each other and one chaotic at-
tractor with symmetry is generated via symmetry-recovering
crisis as Fig. 3(e). Namely, the anti-phase synchronization ex-
hibits symmetry breaking and recovering and torus via Hopf
bifurcation.

- 294 -



(a)

(b)

(c)

(1) (2) (3)

(4)

Figure 4: In-phase synchronization of three chaotic circuits (com-
puter calculated results).γ = 0.01. (a)β = 0.29. (b)β = 0.293. (c)β
= 0.3. (1)x1 vs. x2. (2)x1 vs. x3. (3)x1 vs. z1. (4) Time waveform
for β = 0.3.

4. Three Subcircuits Case

In this section, we consider the case ofN = 3, namely
three chaotic subcircuits are coupled by three mutual induc-
tors.

Computer calculated results are shown in Figs. 4 and 5. In
figures we omit attractors on thexi−zi plane fori = 2, 3, be-
cause the shape is almost same as the attractors on thex1−z1

plane. As well as two subcircuits case, in-phase synchroniza-
tion in Fig. 4 is confirmed to undergo period-doubling route
to chaos. While, three-phase synchronization in Fig. 5 under-
goes torus breakdown.

In order to investigate the bifurcation route in detail, we
consider the Poincare map of each synchronization mode.
The poincare section is defined asz1 = 0,x1 < 0. The projec-
tions of the Poincare map ontox1− x2 plane of in-phase and
three-phase synchronization are shown in Figs. 6 and 7, re-
spectively. From Fig. 6 we can see that one-periodic attractor
(a) bifurcates to two-periodic (b), four-periodic (c), two-band
chaos (d) and one-band chaos (e). This is well-known period
doubling route to chaos. Asβ increase further, chaos grows
as (f). From Fig. 7 we can see the bifurcation route of three-
phase synchronization via torus breakdown. One-periodic at-
tractor (a) bifurcates torus (b) via Hopf bifurcation. Asβ
increases, torus grows as (c)(d). Atβ ∼= 0.258, chaos (e) ap-
pears. Asβ increases further, Poincare map has thickness (f)
and area-expanding chaos is considered to be generated.
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Figure 5: Three-phase synchronization of three chaotic circuits
(computer calculated results).γ = 0.4. (a)β = 0.2. (b)β = 0.25.
(c) β = 0.262. (1)x1 vs. x2. (2) x1 vs. x3. (3) x1 vs. z1. (4) Time
waveform forβ = 0.262.

Moreover, we made one-parameter bifurcation diagrams of
the Poincare map as shown in Figs. 8 and 9. Fig. 8 shows that
in-phase synchronization exhibits logistic chaos. We can also
observe the generation of five-periodic window aroundβ =
0.302. It is clear that the synchronization becomes weak for
largerβ value. From Fig. 9 we can confirm the bifurcation
route of three-phase synchronization, namely bifurcation of
the one-periodic solution to torus aroundβ = 0.239, the gen-
eration of periodic solution aroundβ = 0.241 and the genera-
tion of chaotic solution forβ values more than about 0.258.
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Figure 6:Poincare map of the in-phase synchronization. Horizon-
tal: x1. Vertical: x2. γ = 0.01. (a)β = 0.27. (b)β = 0.285. (c)β =
0.29. (d)β = 0.291. (e)β = 0.293. (f)β = 0.3.
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Figure 7:Poincare map of the three-phase synchronization. Hori-
zontal:x1. Vertical: x2. γ = 0.4. (a)β = 0.2. (b)β = 0.24. (c)β =
0.25. (d)β = 0.255. (e)β = 0.258. (f)β = 0.262.
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Figure 8:Bifurcation diagram of the Poincare map for the in-phase
synchronization.γ = 0.01. (a) Horizontal:β. Vertical: x1. (b)
Horizontal:β. Vertical: x1 − x2.
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Figure 9: Bifurcation diagram of the Poincare map for the three-
phase synchronization.γ = 0.4. Horizontal:β. Vertical: x1.

5. Conclusions

In this study, we investigated quasi-synchronization phe-
nomena observed from simple chaotic circuits coupled by
mutual inductors. By carrying out circuit experiments and
computer calculations for two or three subcircuits case, we
confirmed that various quasi-synchronization phenomena of
chaos were stably observed.

In the future, we investigate phenomena observed from the
case N≥ 4. Moreover we investigate synchronization phe-
nomena observed from two identical chaotic circuits are cou-
pled by a nonlinear mutual inductor.
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