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Abstract

In this study, spatio-temporal chaotic behavior in cou-
pled chaotic maps with parameter deviations is shown. The
chaotic map which has been governed by a fifth-power
polynomial function is properly selected as a chaotic cell.
We consider a simple model which each cell has parameters
with slight error margin are connected to four neighbors by
arbitrary coupling strength. Analytical bifurcation diagram
and Lyapunov exponent of the chaotic map are investigated
rigorously. Several phase patterns of spatio-temporal chaos
are shown.

1. Introduction

It is interested in various pattern formations how to cre-
ate in the natural world very much in a broad sense. Cou-
pled chaotic systems attract many researchers’ attention
as a good model which can realize the complicated phe-
nomena in the natural world, and further its dynamics can
yield a wide variety of complex and strange phenomena.
The coupled systems existing in nature exhibit great va-
riety of phenomena such as complex mechanisms for all
of the systems in the universe. These phenomena can be
found in a metabolic network, a human society, the pro-
cess of a life, self organization of neuron, a biological sys-
tem, an ecological system and so many nonlinear systems.
Among the studies on such coupled systems, many interest-
ing researches relevant to the spatio-temporal chaos phe-
nomena on the coupled chaotic systems have been stud-
ied until now, e.g. mathematical model in one- or two-
dimensional network investigated earnestly by Kaneko[1]-
[4], and found in physical circuit model[5]. Moreover, re-
search of complicated phenomena and emergent property
in the coupled cubic maps on two-dimensional network
system has been also reported[6]. The studies of coupled
map lattice(CML), globally coupled maps(GCM) and so
many studies concerned with such complex systems pro-
vided us tremendous interesting phenomena. We had re-
ported the research on spatio-temporal phase patterns in
coupled maps, using a fifth-power function[7], in which it
has been carried out in the unique case which parameters of
the chaotic map and coupling strength are all the same set-
tings. However many coupled chaotic systems have wide
variety of features and moreover its dynamics is also ex-
pected to be applied much engineering applications, there
are many problems which should be solved in large scale

Figure 1: Chaotic map model by a fifth-power polynomial
function for a=5.2, b=10.0 and c=4.1.

coupled network systems by their complexity.
In this study, spatio-temporal chaotic behavior in cou-

pled chaotic maps with parameter deviations is investigated
from the point of view in more faithful natural world. The
chaotic map which has been governed by a fifth-power
polynomial function is properly selected as a chaotic cell.
We consider the model which chaotic cells are mutually
connected to some neighbors for spreading on the two-
dimensional space by arbitrary coupling strength. Then,
we show some phenomena which spatio-temporal chaos,
complex behavior and several phase patterns can be found
in the proposed coupled systems.

2. Model Description

Chaotic maps are generally used for several approaches
to investigate chaotic phenomena on coupled chaotic sys-
tems. Especially, the logistic map and the other types of
chaotic maps such as a cut map, a circle map, a tent map,
a cubic map are well known and popular. Let us consider a
fifth-power polynomial function as a chaotic subsystem in
each cell written as follows.

f (x) = ax5 − bx3 + cx, a, b, c > 0 (1)

where a, b and c are parameters which can determine for
their chaotic feature. We can easily confirm that it gen-
erates chaos in this function. The function (1) is shown
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Figure 2: Bifurcation diagram for b = 10.0.

in Fig. 1 with some equilibrium points. In general, more
plural patterns can be expected to be generated compared
with [6], because many equilibrium points can be taken in
a higher dimensional map.

From (1), it can be calculated rigorously several bifurca-
tion conditions and boundary region. For instance, a nec-
essary and sufficient condition for having fixed points of
f (x∗) = x∗ from (1) except the origin can be calculated
exactly as

b2 − 4a(c − 1) > 0 . (2)

We can only confirm that the system diverges in this set-
ting. Since this system (1) is formed with respect to the
origin, variable x moves around neither plus or minus re-
gion symmetrically by setting of the parameter. Similarly,
this condition can be calculated exactly as

b2 − 4ac < 0 . (3)

However, even if in case of the condition (3), chaotic oscil-
lation is not symmetry with respect to the origin except in
special case, e.g. a = 8.0, b = 10.0 and c = 3.0, if satisfied
as follows.

f ( f (s1)) > 0 . (4)

Since this equation can not be calculated explicitly, the bi-
furcation curve is obtained numerically by computer calcu-
lation.

Furthermore, we can also obtain the conditions that solu-
tion emanates to infinity by calculating from the following
evaluation. The values of [ f ′(x) = 0, x > 0] at coordinate
si while in the condition (2),

s1 =

√
3b − √9b2 − 20ac

10a
,

s2 =

√
3b +

√
9b2 − 20ac
10a

,

(5)
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Figure 3: Bifurcation diagram and Lyapunov exponents by
changing a for fixed b = 10.0. (a) c = 4.1 , (b) c = 3.5 .

then, solve f (s1) > p1 and f (s2) < p2 the following

f (s1) >

√
b +
√

b2 − 4a(c − 1)
2a

,

f (s2) < −
√

b +
√

b2 − 4a(c − 1)
2a

,

(6)

we can obtain the parameter of divergence point numeri-
cally. For example, by calculating for the settings b = 10.0
and c = 4.1 as a = 6.39953 and 4.65828, respectively. Bi-
furcation diagram is partially illustrated in Fig. 2 by chang-
ing both a and c for fixed b = 10.0. Moreover, some analyt-
ical bifurcation curve can also be obtained such as tangent
bifurcation, fixed point and so on.

In order to evaluate the function (1), Lyapunov exponent
can be calculated as follows.

λ = lim
N→∞

N∑
k=1

log
∣∣∣∣∣d f (xk)

dt

∣∣∣∣∣ . (7)
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Figure 4: Snapshot of chaotic map with attractor: (a) coex-
ist with fixed point and divergence for a = 9.6, b = 10.0 and
c = 3.5, (b) coexist with chaotic attractor and divergence for
a = 5.0, b = 10.0 and c = 3.1.

Lyapunov exponents with bifurcation diagram by increas-
ing a gradually for fixed b = 10.0 and c = 4.1 are shown
in Fig. 3 (a). In case of this parameter setting, we can eas-
ily calculate parameter in which symmetry collapses is as
a > 250/41. We can confirm that solution diverges for
a > 6.39953. Figure 3 (b) also shows bifurcation diagram
and Lyapunov exponents for c = 3.5 across the parameter a
as shown in Fig. 2. Some snapshots of attractor obtained for
special cases of coexistence from (1) are shown in Fig. 4;
converge to equilibrium point and divergence for (a) a =
9.6, b = 10.0 and c = 3.5, attract to chaotic orbit and di-
vergence for (b) a = 5.0, b = 10.0 and c = 3.1. It can be
confirmed that solution coexists with an equilibrium point
and divergence to infinity, with chaos and divergence, re-
spectively. As we can see, several modes of chaos, limit
cycle and periodic window can be seen by changing the
parameters.

3. Spatio-temporal Chaos in Coupled Chaotic Maps

It can be considered easily that coupled chaotic systems
have wide variety of phase patterns. The term “spatio-
temporal” is extensively used for irregular dynamical be-
havior observed from large scale complex systems of the
relevant to both time and space. In this study, in order to
confirm spatio-temporal chaos or several phase patterns in
the faithful natural world, we consider a network model
of the chaotic maps placed spatially on two-dimensional
space are connected to neighbors by arbitrary coupling
strength ε. Generally it is able to be considered a coupled
model which each cell is connected r-neighbor cells Ξr(i j)
by coupling strength ε. In order to investigate simply rele-
vant to time and spatial transition, we define and consider

an equation for a description model of the entire system
that each cell is connected to 1-neighbor Ξ1(i j) with 4 cells
by cyclic rule as follows.

xi j(t+1) = (1−ε) f
(
xi j(t)
)
+
ε

4

∑
kl∈Ξ1

f
(
xkl(t)
)

(8)

where t is a number of iteration in each cell, {i, j} is an
index number of cell.

Some numerical simulation results on such model (8) as
size of 50×50 cells on two-dimensional space are shown in
Fig. 5 for the parameter fixed as a = 5.45, b = 10.0 and c
= 4.1. The initial condition for each cell is given at ran-
dom between −1.0 and 1.0. The figure indicates a grade
of synchronization state for phase difference with a nearby
average, which black and white colors correspond to
synchronous and asynchronous states, respectively. Hereby
the synchronous states are displayed with 100 steps gray
scale colors. Figure 5 shows some snapshots of phase pat-
terns as time increasing for a = 5.45, b = 10.0, c = 4.1 and ε
= 0.25. The pattern at time t = 1 means initial state, which
black region almost occupied visibly. However, as time
passed, the entire state becomes asynchronously. Finally,
some part only remains synchronous state at t = 1000. In
this case, the phase pattern behaves almost asynchronous
well, however some parts produce unique patterns while
keeping synchronous state as a cluster.

On the other hand, we now consider the situation that
some chaotic cells have slight error margin as compared
with the other cells in order to investigate from the point of
view in more faithful natural world. Figure 6 shows some
numerical simulation results at time t = 1000 for giving
the maximum parameter deviations with 0.1%, 0.5%, 1%
and 10% to only a, respectively. The initial conditions are
putting as all the same values in each result. Hence it has
just different parameters a with slight error margin. We
can confirm that some results could be obtained as different
phenomena. In order to investigate the influence on syn-
chronization depending on the parameters, a synchronous
ratio was calculated. Results of the ratio of synchronous
states with 5% maximum parameter deviations of a are
shown in Fig. 7. We can confirm that a synchronous ra-
tio is a high average according to the area of asymmetric
region as shown in Fig. 2. Similar results can be confirmed
when there is no error margin of the parameters. These
results are some typical examples obtained by numerical
simulation. From some numerical results, it has been con-
firmed that a slight error margin does not exert or influence
on the entire system too much. However, the phenomena
such the mutation can be also confirmed with parameter
deviations in some situations. Therefore, some phenomena
of spatio-temporal chaos or complex behavior of several
phase patterns can be found in these systems.

4. Conclusions

In this study, a fifth-power function for using as a chaotic
maps was proposed, further rigorous analysis, bifurcation
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Figure 5: Some snapshots of numerical simulation results
depended by time to two-dimensional space for fixed pa-
rameters a = 5.45, b = 10.0 and c = 4.1 without parameter
deviations. ε = 0.25, t: number of iteration. Number of
cells is 50 × 50.

diagram and Lyapunov exponents were shown. Some il-
lustrated computer simulation results of spatio-temporal
chaotic behavior and several phase patterns in coupled
chaotic maps have been shown. We conclude that the sup-
posed or similar coupled chaotic systems can be regarded
as a good model for realizing complex phenomena in the
universe concerned with self organization, mechanisms of
pattern formation and so on. However some studies of pat-
tern dynamics and the mechanism of clustering phenomena
in such complex phenomena and many works have been
left.

Acknowledgment

This work was partly supported by The Hirao Taro Foun-
dation of the Konan University Association for Academic
Research and by GRANT-IN-AID for “Open Research
Center” project from MEXT, Japan.

References

[1] K. Kaneko, “Spatiotemporal Intermittency in Coupled Map
Lattices,” Prog. Theor. Phys., vol. 75, no. 5, pp. 1033–1044,
1985.

[2] K. Kaneko, “Pattern Dynamics in Spatiotemporal Chaos,”
Physica D, vol. 34, pp. 1–41, 1989.

(a) (b)

(c) (d)

Figure 6: Some other phase patterns obtained from numer-
ical simulation at time t = 1000 as fixed parameters b =
10.0 and c = 4.1 with maximum parameter deviations for
the value of a = 5.45, (a) 0.1%, (b) 0.5%, (c) 1%, (d) 10% .

3

3.5

4

4.5
4

6

8

10

120

0.2

0.4

0.6

0.8

1

a
c

ra
tio

Figure 7: Ratio of synchronous states by changing the pa-
rameters a and c on coupled chaotic maps for b = 10.0 and
e = 0.25 with 5% maximum parameter deviations of a at
time t = 1000.

[3] K. Kaneko, “Spatiotemporal Chaos in One- and Two-
Dimensional Coupled Map Lattices,” Physica D, vol. 37,
pp. 60–82, 1989.

[4] K. Kaneko, “Simulating Physics with Coupled Map Lat-
tices – Pattern Dynamics, Information Flow, and Thermo-
dynamics of Spatiotemporal Chaos,” Formation, Dynamics,
and Statistics of Patterns, World Sci., pp. 1–52, 1990.

[5] Y. Nishio and A. Ushida, “Spatio-Temporal Chaos in Sim-
ple Coupled Chaotic Circuits,” IEEE Trans. on Circuit and
Systems-I, vol. 42, no. 10, pp. 678–686, Oct. 1995.

[6] M. Wada, K. Hirai and Y. Nishio, “A Multi-Agent Sys-
tem and State Control of Coupled Chaotic Maps,” Proc. of
NOLTA’01, vol.1, pp. 211–214, 2001.

[7] K. Kitatsuji and M. Wada, “Spatio-temporal Chaos and Sev-
eral Phase Patterns in Coupled Chaotic Maps using Fifth-
Power Function,” Proc. of NCSP’05, pp. 113–116, 2005.

181


