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Abstract - The Self-Organizing Map (SOM) is an unsupervised neural network introduced
in the 80°s by Teuvo Kohonen. In this paper, we propose a method of using simultaneously
two kinds of SOMs whose features are different. Namely, one is distributed in the area on
which input data are concentrated, and the other self-organizes the whole of the input space.
The competing behavior of the two kinds of SOMs for nonuniform input data is investigated.
Furthermore, we show its application to clustering and confirm the efficiency by comparing
with the k-means method.
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1 Introduction

In data mining, clustering is essential and important. The k-means method is known as the
representative method because of its simplicity [1]. However, when the data contains many
noises, it is difficult to extract only the cluster exactly using the k-means method. Then,
the Self-Organizing Map (SOM) attracts attentions in recent years. SOM is an unsupervised
neural network introduced by Kohonen in 1982 [2] and is a model simplifying self-organization
process of the brain. SOM obtains a statistical feature of input data and is applied to a wide
field of data classifications. Although many methods to extract clusters by using SOM have
been proposed [3][4][5], it seems to be very difficult to construct a simple method using SOM
for universal input data. Further, since we can accumulate a huge amount of data including
useless information in these years, it is important to investigate various extraction methods
of clusters from data including a lot of noises.

In our past study, we have investigated the basic features of using two kinds of SOMs whose
features are different [6]. We have confirmed that the two SOMs could extract the features
of 2-dimensional nonuniform input data. However, in the study the difference between two
SOMs was not completely clear and the clustering ability was not evaluated. In this study,
we propose a method using simultaneously two kinds of SOMs whose features are different.
Namely, one self-organizes the area on which input data are concentrated, and the other
self-organizes the whole of the input space. We explain the difference of the two kinds of
SOMs with the learning algorithm and investigate the competing behavior of the two kinds
of SOMs. Next, we apply the two kinds of SOMs to clustering. For 2 and 3-dimensional
input data including a lot of noises (corresponding to useless information), clustering ability
is evaluated both visually and quantitatively using a correct answer rate. Further, the results
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are compared with those obtained by the k-means method. We also apply the two kinds of
SOMs to 5-dimensional input data including a lot of noises and confirm the clustering ability
for higher-dimensional data.

2 Two Kind of SOMs

In this study, we propose a method using simultaneously two kinds of SOMs, namely, one
self-organizes the area on which input data are concentrated, and the other self-organizes the
whole of the input space. We call the former SOMj, and the latter SOMg;.

2.1 Learning algorithm

We explain the learning algorithm of the two kinds of SOMs. In order to apply the two
kinds of SOMs to clustering applications, we use totally n SOMs, that is one SOMg and

(n — 1) SOML; namely SOMyry, SOMLz, -+, SOML(,_1). In each SOM, m neurons are
arranged as a regular 2-dimensional grid. The range of the elements of d-dimensional input
data @; = (21,252, --,2;4) (j =1,2,--+,N) are assumed to be from 0 to 1.

[PHASE 1]

(nSOM1) The initial values of all the weight vectors wy; of SOMy; (I =1,2,---,n—1) are
given between 0 and 1 at random. The initial values of all the weight vectors wg of SOM¢
are given around the center of the input space at random, for example uniform between 0.45
and 0.55.

[PHASE 2]
(nSOM2) An input data @; is inputted to all the neurons of SOMg and SOMj,; at the same
time in parallel.

(nSOM3) The distance between x; and the weight vector wg; = (wgi, Waiz, -+ Waid)
(i = 1,2,---,m) of the neuron 7 of SOMq, and the distance between x; and the weight
vector wr;; = (WL, WLise, > WLigg) of the neuron ¢ of SOMy,; are calculated. The internal

activity degrees netq! and netr,;! are obtained as;
neta] = llwai — @il wetsd = s — a7 1)

(nSOM4) The winner neuron ¢(j) for «; is the neuron with the maximum internal activity
degree in all net}, and netr].

(nSOMS5) If the winner neuron ¢(j) is a neuron in SOMg, the weight vectors of the all
neurons of SOM¢ are updated as;

wai(t+ 1) = wai(t) + hae)i(H) (@) — wai(t)), (2)

where hg.(;),i(t) is the neighborhood function of SOMg.
While, if the winner neuron ¢(j) is in SOMy,;, the weight vectors of the neurons of SOMy,
are updated as;

wr(t+ 1) = wr(t) + hiey (@) — wir(t)), (3)
where h(;) i(t) is the neighborhood function of SOMy,. The neighborhood functions hg.(;),:(?)
and th(j)J(t) are important functions deciding the behaviors of n SOMs and are explained

in the next subsection.
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(nSOMG6) The steps from (nSOM2) to (nSOM5) are repeated for all the input data, namely
from j =1toj = N.

[PHASE 3]

(nSOMT) Furthermore, only SOM¢ learns with the time reset as ¢t = 0.

(nSOMS8) An input data is inputted to all the neurons similarly to the step (RSOM2).
(nSOM9) The internal activity degree netr;! is calculated similarly to the step (nSOMS3).
(nSOM10) If the maximum value of netLlf is smaller than a given threshold value 1/e (this
means that the distance between the input data and SOMy, is larger than ¢), the weight
vectors of the neurons of SOMg are updated as;

wai(t+1) = wait) + hasejy (@) — wai(t)). (4)

(nSOM11) The steps from (RSOMS8) to (rSOM10) are repeated for all the input data.

2.2 Neighborhood function

In the learning algorithm of n SOMs, the difference between the neighborhood functions of
SOM¢ and SOMj, plays a key role to decide their behaviors.
The neighborhood functions for SOMg and SOMy, are described as follows;

heoii(t) = ag(t) exp i =il hioi i(t) = an(t)exp i =yl (5)
0 20%(t) )7 UM 200(1) )

where ag(t) and ar(t) are the learning rate, r; and r.(;) are the vectorial locations on the
display grid, and og(t) and or(¢) correspond to the widths of the neighborhood functions.
In order to give different features to SOMg and SOMy,, we set the following schedule functions

for ag(t), og(t), ap(t), and or(t).
ag(t) = ac(0) (1 =t/T), oG(t) = o6(0) (1 = t/T)*,

1 6
ap(t)=ar(0) {1-(t/T)>},  oult)=or(0)(1—1/T), X

where T" is the maximum number of the learning.

Figure 1 shows an example of the neighborhood functions for ag(0) = 0.9, ar(0) = 0.5,
0c(0) = o1,(0) = 4, and T" = 6400. The lines G1 and L1 show the case that the value of
|7i = 7e(jll is zero, while G2 and L2 show the case of ||r; — 7 ;|| = 4/2.

The neighborhood function for SOM¢ in the [PHASE 3] is given as follows;

C
20¢,(1)

S Iri = repl”
hese(s) () = acs(t) exp | o | (7)

ags(t) and ogs(t) decrease with time according to the following equations;
aGs(t) = aGs(O) (1 - t/Ts) ) UGs(t) = UGS(O) (1 - t/Ts) ) (8)

where T is the maximum number of the learning since the step (nSOMT).
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Figure 1: An example of neighborhood functions.

2.8 Simulation Results

As explained in the previous subsections, the main differences between SOM¢g and SOMy,
are only the initial states and the neighborhood functions. However, these differences cause
interesting behaviors of n SOMs.

Figure 2 shows an example of input data and initial states of SOMg and SOMj, for the
case of n = 2 (namely the number of SOMy, is only one). Input data in Fig. 2(a) include
2-dimensional 1600 points (j=1600). Each SOM has 100 neurons (10 X 10).
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Figure 2: (a) Input data. (b) Initial state of SOMg. (c¢) Initial state of SOMp,.

The parameters of the learning are chosen as follows;

ag(0) = 0.9, a(0) = 0.5, 05(0) =2, o4(0) =4, ag,(0) = 0.5, 054(0) =2, e = 0.02.

After repeating [PHASE 2] four times, furthermore [PHASE 3] are repeated four more times.
The simulation result is shown in Fig. 3. Figures 3(a) and (b) show the states after [PHASE
2] and [PHASE 3], respectively. The network at the upper left corner is SOMy, and the other
network is SOMgq.

Because only one neuron of all the neurons in the both SOMs can be a winner for one input
data according to (nSOM4), the two networks compete each other in [PHASE 2] as shown in
Fig. 3(a). In the early stage of [PHASE 2], only SOMj, actively moves according to the input
data, because the initial state of SOM;y, covers the whole input space. Hence, SOMjy, tends to
move to the area where the input data are dense. In the late stage of [PHASE 2], SOMy, will
not make a large move any more, because the learning rate oy () decreases rapidly according
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Figure 3: Simulation results. (a) After [PHASE 2]. (b) After [PHASE 3].

to Eq. (6). While SOM¢ actively moves all over the whole space except the area occupied by
SOMjy,, because SOMy, stays in the limited area and the width of the neighborhood function
o¢(t) decreases slowly according to Eq. (6).

In the [PHASE 3], SOM¢ covers the whole input space beyond the area occupied by SOMj,
as shown in Fig. 3(b).

3 Application to Clustering

The concept using n SOMs can be exploited to extract the data only in clusters of the input
data including a lot of noises, because SOMy, can find such areas by themselves.

3.1 2-dimensional input data

At first, we consider 2-dimensional input data as shown in Fig. 4(a). The input data is
generated artificially as follows. Total number of the input data is 1600. 25% of the input
data are distributed within a range from 0.2 to 0.3 horizontally and from 0.7 to 0.8 vertically,
and these data are called the cluster C';. 50% of the input data are distributed in another
cluster Cy, whose horizontal-values follow the normal distribution N (0.7, 0.04), and the
vertical-values N (0.2, 0.0016). The remaining 25% of the input data are distributed between
0 and 1 at random.
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(a)
Figure 4: Clustering of 2-dimensional input data. (a) Input data. (b) Simulated result after [PHASE
2]. (b) Simulated result after [PHASE 3].
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We use one SOM¢g and two SOMj,. Each SOM has 100 neurons (10 x 10), namely 3 SOMs
have totally 300 neurons. The parameters of the learning are chosen as follows;

ag(0) = 0.9, ar(0) =0.5, 0¢(0) = 0,(0) =4, ags(0) = 0.7, 05:(0) =2, ¢ = 0.05.

After repeating [PHASE 2] four times, furthermore [PHASE 3] are repeated four more times.
The simulation results after [PHASE 2] and [PHASE 3] are shown in Figs. 4(b) and (c),
respectively. We can see that two SOMj, stay around the two clusters.

In order to extract the input data only in the clusters, we calclate the distance between the
input data z; and wr,; in SOMy,; after [PHASE 2]. (Actually, for the purpose of the clustering,
we do not need [PHASE 3].) If the calculated distance is smaller than R, the input data x;
is classified into the cluster corresponding to SOMy,;. Figures 5(a) and (b) show the input
data classified into the clusters corresponding to SOMp,; and SOMy,q, respectively, R = 0.05.
As we can see from the figures, SOMy, can successfully extract the clusters.
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Figure 5: Extraction of clusters by n SOMs method. (a) Cluster 1. (b) Cluster 2.

Although, the k-means method is known to be not useful for the data including a lot of noises,
we carry out the k-means method for the same input data for the comparison. Figure 6 shows
the results obtained by using the k-means method, where the number of the cluster is set as
k = 3. We can see that the clusters obtained by the k-means method include a lot of noises.
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Figure 6: Extraction of clusters by k-means method. (a) Cluster 1. (b) Cluster 2. (¢) Noises.

In order to evaluate the clustering ability of n SOMs quantitatively, we define the correct
answer rate R as follows;

Reop=— ¢, (9)
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where N¢og is the true number of the input data within the cluster C7, N, is the obtained
number of the desired input data within C7, and N, is the obtained number of undesired
input data out of Cj. The calculated results are summarized in Table 1. We can evaluate
the effectiveness of the method using n SOMs by this index value.

Table 1: Correct answer rate [%] for 2-dimensional input data.

| | Ch | Cy |
n SOMs method 86.80 91.28 |
k-means method 79.95 70.18 ‘

3.2 3-dimensional input data

Next, we carry out simulation for 3-dimensional input data shown in Fig. 7(a). The input
data include two clusters and a lot of noises out of the clusters.

Figure 7: Clustering of 3-dimensional input data. (a) Input data. (b) Extracted cluster by SOMy,;.
(¢) Extracted cluster by SOMp,s.

Figures 7(b) and (c) show the extracted clusters by the n SOMs method. We can confirm
that the noises are removed by SOM¢g and only the cluster part can be extracted vely well.
The correct answer rates are summarized in Table 2. We can confirm the clustering ability

using n SOMs.

Table 2: Correct answer rate [%] for 3-dimensional input data.

| | Gy | Cy |
n SOMs method 89.00 86.15 |
k-means method 61.91 60.19 ‘

3.3 5-dimensional input data

Furthermore, we performed the simulation for 5-dimensional input data of 1600 points. This
data include four clusters and a lot of noises, and the four clusters are generated by random
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Table 3: 5-dimensional Gaussian data.

Dimension .
No. T 5 3 1 5 Probability [%]

Mean value 0.8 0.3 0.7 0.2 0.7

C1 Variance 0.0016 | 0.0081 | 0.0036 | 0.0009 | 0.0081 15
Mean value | 0.35 0.8 0.3 0.7 0.2

C2 | Variance | 0.0036 | 0.0004 | 0.01 | 0.0081 | 0.0036 20
Mean value 0.6 0.9 0.1 0.1 0.9

Cs Variance 0.0004 | 0.0016 | 0.0009 | 0.0025 | 0.0009 15
Mean value 0.2 0.1 0.8 0.4 0.3

C4 | Variance | 0.0016 | 0.01 | 0.0004 | 0.0225 | 0.0025 20

Table 4: The correct answer rate [%] of 5-dimensional input data.

| I N Y e
n SOMs method 89.84 94.22 98.39 96.33
k-means method 54.69 73.86 85.48 73.33

Gaussian data as shown in Table 3. The parameters of the learning are chosen as follows;
ac(0) = 0.9, ar(0) =0.6, 0¢(0) = 0,(0) =4, ags(0) =0.7, 0¢:(0) =2, e =0.2, R =0.2.

The correct answer rate is summarized in Table 4. We can say that the method of using n
SOMs are effective for higher-dimensional input data.

4 Conclusions

In this study, we have propose the method using simultaneously two kinds of SOMs whose
features are different. We have investigated its competeing behavior caused by the difference
of the initial states and the neighborhood functions. Further, we have applied the two kinds
of SOMs to clustering of data including a lot of noises and have confirmed the efficiency.
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